本文整理匯總了Python中pants.base.worker_pool.SubprocPool.foreground方法的典型用法代碼示例。如果您正苦於以下問題:Python SubprocPool.foreground方法的具體用法?Python SubprocPool.foreground怎麽用?Python SubprocPool.foreground使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pants.base.worker_pool.SubprocPool
的用法示例。
在下文中一共展示了SubprocPool.foreground方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from pants.base.worker_pool import SubprocPool [as 別名]
# 或者: from pants.base.worker_pool.SubprocPool import foreground [as 別名]
def __init__(self, *args, **kwargs):
"""
:API: public
"""
super(RunTracker, self).__init__(*args, **kwargs)
self._run_timestamp = time.time()
self._cmd_line = ' '.join(['pants'] + sys.argv[1:])
# Initialized in `initialize()`.
self.run_info_dir = None
self.run_info = None
self.cumulative_timings = None
self.self_timings = None
self.artifact_cache_stats = None
self.pantsd_stats = None
# Initialized in `start()`.
self.report = None
self._main_root_workunit = None
# A lock to ensure that adding to stats at the end of a workunit
# operates thread-safely.
self._stats_lock = threading.Lock()
# Log of success/failure/aborted for each workunit.
self.outcomes = {}
# Number of threads for foreground work.
self._num_foreground_workers = self.get_options().num_foreground_workers
# Number of threads for background work.
self._num_background_workers = self.get_options().num_background_workers
# self._threadlocal.current_workunit contains the current workunit for the calling thread.
# Note that multiple threads may share a name (e.g., all the threads in a pool).
self._threadlocal = threading.local()
# For background work. Created lazily if needed.
self._background_worker_pool = None
self._background_root_workunit = None
# Trigger subproc pool init while our memory image is still clean (see SubprocPool docstring).
SubprocPool.set_num_processes(self._num_foreground_workers)
SubprocPool.foreground()
self._aborted = False
# Data will be organized first by target and then scope.
# Eg:
# {
# 'target/address:name': {
# 'running_scope': {
# 'run_duration': 356.09
# },
# 'GLOBAL': {
# 'target_type': 'pants.test'
# }
# }
# }
self._target_to_data = {}
示例2: __init__
# 需要導入模塊: from pants.base.worker_pool import SubprocPool [as 別名]
# 或者: from pants.base.worker_pool.SubprocPool import foreground [as 別名]
def __init__(self, *args, **kwargs):
super(RunTracker, self).__init__(*args, **kwargs)
run_timestamp = time.time()
cmd_line = ' '.join(['pants'] + sys.argv[1:])
# run_id is safe for use in paths.
millis = int((run_timestamp * 1000) % 1000)
run_id = 'pants_run_{}_{}_{}'.format(
time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime(run_timestamp)), millis,
uuid.uuid4().hex)
info_dir = os.path.join(self.get_options().pants_workdir, self.options_scope)
self.run_info_dir = os.path.join(info_dir, run_id)
self.run_info = RunInfo(os.path.join(self.run_info_dir, 'info'))
self.run_info.add_basic_info(run_id, run_timestamp)
self.run_info.add_info('cmd_line', cmd_line)
# Create a 'latest' symlink, after we add_infos, so we're guaranteed that the file exists.
link_to_latest = os.path.join(os.path.dirname(self.run_info_dir), 'latest')
relative_symlink(self.run_info_dir, link_to_latest)
# Time spent in a workunit, including its children.
self.cumulative_timings = AggregatedTimings(os.path.join(self.run_info_dir,
'cumulative_timings'))
# Time spent in a workunit, not including its children.
self.self_timings = AggregatedTimings(os.path.join(self.run_info_dir, 'self_timings'))
# Hit/miss stats for the artifact cache.
self.artifact_cache_stats = \
ArtifactCacheStats(os.path.join(self.run_info_dir, 'artifact_cache_stats'))
# Number of threads for foreground work.
self._num_foreground_workers = self.get_options().num_foreground_workers
# Number of threads for background work.
self._num_background_workers = self.get_options().num_background_workers
# We report to this Report.
self.report = None
# self._threadlocal.current_workunit contains the current workunit for the calling thread.
# Note that multiple threads may share a name (e.g., all the threads in a pool).
self._threadlocal = threading.local()
# For main thread work. Created on start().
self._main_root_workunit = None
# For background work. Created lazily if needed.
self._background_worker_pool = None
self._background_root_workunit = None
# Trigger subproc pool init while our memory image is still clean (see SubprocPool docstring).
SubprocPool.set_num_processes(self._num_foreground_workers)
SubprocPool.foreground()
self._aborted = False
示例3: subproc_map
# 需要導入模塊: from pants.base.worker_pool import SubprocPool [as 別名]
# 或者: from pants.base.worker_pool.SubprocPool import foreground [as 別名]
def subproc_map(self, f, items):
"""Map function `f` over `items` in subprocesses and return the result.
:param f: A multiproc-friendly (importable) work function.
:param args: A iterable of pickleable arguments to f.
"""
try:
# Pool.map (and async_map().get() w/o timeout) can miss SIGINT.
# See: http://stackoverflow.com/a/1408476, http://bugs.python.org/issue8844
# Instead, we map_async(...), wait *with a timeout* until ready, then .get()
# NB: in 2.x, wait() with timeout wakes up often to check, burning CPU. Oh well.
res = SubprocPool.foreground().map_async(f, items)
while not res.ready():
res.wait(60) # Repeatedly wait for up to a minute.
if not res.ready():
self.log.debug('subproc_map result still not ready...')
return res.get()
except KeyboardInterrupt:
SubprocPool.shutdown(True)
raise
示例4: __init__
# 需要導入模塊: from pants.base.worker_pool import SubprocPool [as 別名]
# 或者: from pants.base.worker_pool.SubprocPool import foreground [as 別名]
def __init__(self,
info_dir,
stats_upload_url=None,
stats_upload_timeout=2,
num_foreground_workers=8,
num_background_workers=8):
self.run_timestamp = time.time() # A double, so we get subsecond precision for ids.
cmd_line = ' '.join(['./pants'] + sys.argv[1:])
# run_id is safe for use in paths.
millis = (self.run_timestamp * 1000) % 1000
run_id = 'pants_run_%s_%d' % \
(time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime(self.run_timestamp)), millis)
self.run_info_dir = os.path.join(info_dir, run_id)
self.run_info = RunInfo(os.path.join(self.run_info_dir, 'info'))
self.run_info.add_basic_info(run_id, self.run_timestamp)
self.run_info.add_info('cmd_line', cmd_line)
self.stats_url = stats_upload_url
self.stats_timeout = stats_upload_timeout
# Create a 'latest' symlink, after we add_infos, so we're guaranteed that the file exists.
link_to_latest = os.path.join(os.path.dirname(self.run_info_dir), 'latest')
try:
if os.path.lexists(link_to_latest):
os.unlink(link_to_latest)
os.symlink(self.run_info_dir, link_to_latest)
except OSError as e:
# Another run may beat us to deletion or creation.
if not (e.errno == errno.EEXIST or e.errno == errno.ENOENT):
raise
# Time spent in a workunit, including its children.
self.cumulative_timings = AggregatedTimings(os.path.join(self.run_info_dir,
'cumulative_timings'))
# Time spent in a workunit, not including its children.
self.self_timings = AggregatedTimings(os.path.join(self.run_info_dir, 'self_timings'))
# Hit/miss stats for the artifact cache.
self.artifact_cache_stats = \
ArtifactCacheStats(os.path.join(self.run_info_dir, 'artifact_cache_stats'))
# Number of threads for foreground work.
self._num_foreground_workers = num_foreground_workers
# Number of threads for background work.
self._num_background_workers = num_background_workers
# We report to this Report.
self.report = None
# self._threadlocal.current_workunit contains the current workunit for the calling thread.
# Note that multiple threads may share a name (e.g., all the threads in a pool).
self._threadlocal = threading.local()
# For main thread work. Created on start().
self._main_root_workunit = None
# For concurrent foreground work. Created lazily if needed.
# Associated with the main thread's root workunit.
self._foreground_worker_pool = None
# For background work. Created lazily if needed.
self._background_worker_pool = None
self._background_root_workunit = None
# Trigger subproc pool init while our memory image is still clean (see SubprocPool docstring)
SubprocPool.foreground()
self._aborted = False