本文整理匯總了Python中opus_core.misc.DebugPrinter.print_debug方法的典型用法代碼示例。如果您正苦於以下問題:Python DebugPrinter.print_debug方法的具體用法?Python DebugPrinter.print_debug怎麽用?Python DebugPrinter.print_debug使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類opus_core.misc.DebugPrinter
的用法示例。
在下文中一共展示了DebugPrinter.print_debug方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
def __init__(self, resources=None, in_storage=None, out_storage=None,
in_table_name=None, attributes=None,
out_table_name=None, id_name=None,
nchunks=None, other_in_table_names=None,
debuglevel=0):
debug = DebugPrinter(debuglevel)
debug.print_debug("Creating DevelopmentGroupDataset object.",2)
resources = ResourceCreatorDevelopmentGroups().get_resources_for_dataset(
resources = resources,
in_storage = in_storage,
out_storage = out_storage,
in_table_name = in_table_name,
out_table_name = out_table_name,
attributes = attributes,
id_name = id_name,
id_name_default = self.id_name_default,
nchunks = nchunks,
debug = debug
)
Dataset.__init__(self,resources = resources)
if isinstance(other_in_table_names,list):
for place_name in other_in_table_names: #load other tables
ds = Dataset(resources = resources)
ds.load_dataset(in_table_name=place_name)
self.connect_datasets(ds)
示例2: __init__
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
def __init__(self, resources=None, dataset1=None, dataset2=None, index1 = None, index2 = None,
debuglevel=0):
debug = DebugPrinter(debuglevel)
debug.print_debug("Creating object %s.%s" % (self.__class__.__module__, self.__class__.__name__), 2)
local_resources = Resources(resources)
local_resources.merge_if_not_None({"dataset1":dataset1,
"dataset2":dataset2, "debug":debug,
"index1":index1, "index2":index2})
CoreInteractionDataset.__init__(self, resources = local_resources)
示例3: __init__
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
def __init__(
self,
categories=array([1]),
resources=None,
what=None,
attribute_name=None,
data=None,
names=None,
in_storage=None,
out_storage=None,
in_table_name=None,
attributes=None,
out_table_name=None,
id_name=None,
nchunks=None,
debuglevel=0,
):
"""
'what' must be a string, such as 'residential' or 'commercial'.
"""
debug = DebugPrinter(debuglevel)
debug.print_debug("Creating DevelopmentProjectDataset object for %s projects." % what, 2)
self.categories = categories
self.what = what
self.attribute_name = attribute_name
attributes_default = AttributeType.PRIMARY
dataset_name = "development_project"
nchunks_default = 1
if data <> None:
in_storage = StorageFactory().get_storage("dict_storage")
in_storage.write_table(table_name="development_projects", table_data=data)
in_table_name = "development_projects"
resources = ResourceFactory().get_resources_for_dataset(
dataset_name,
resources=resources,
in_storage=in_storage,
out_storage=out_storage,
in_table_name_pair=(in_table_name, None),
out_table_name_pair=(out_table_name, None),
attributes_pair=(attributes, attributes_default),
id_name_pair=(id_name, self.id_name_default),
nchunks_pair=(nchunks, nchunks_default),
debug_pair=(debug, None),
)
self.category_variable_name = resources.get("category_variable_name", self.category_variable_name_default)
Dataset.__init__(self, resources=resources)
示例4: run
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
def run(self, projects, types, units, year=0, location_id_name="grid_id", debuglevel=0):
debug = DebugPrinter(debuglevel)
grid_ids_for_any_project = array([], dtype=int32)
grid_ids_by_project_type = {}
for project_type in types:
grid_ids_by_project_type[project_type] = array([], dtype=int32)
if projects[project_type] <> None:
grid_ids_by_project_type[project_type] = projects[project_type].get_attribute(location_id_name)
grid_ids_for_any_project = unique(concatenate((grid_ids_for_any_project,
grid_ids_by_project_type[project_type])))
grid_ids_for_any_project = grid_ids_for_any_project[where(grid_ids_for_any_project>0)]
if not len(grid_ids_for_any_project): return
result_data = {location_id_name: grid_ids_for_any_project,
"scheduled_year":(year*ones((grid_ids_for_any_project.size,))).astype(int32)}
for unit in units:
result_data[unit] = zeros((grid_ids_for_any_project.size,), dtype=int32)
for project_type in types:
result_data["%s_improvement_value" % project_type] = zeros((grid_ids_for_any_project.size,), dtype=int32)
grid_idx=0
for grid_id in grid_ids_for_any_project:
for i in range(0,len(types)):
project_type = types[i]
my_projects = projects[project_type]
w = where(my_projects.get_attribute(location_id_name) == grid_id)[0]
if w.size>0:
unit_variable = units[i]
result_data[unit_variable][grid_idx] = \
my_projects.get_attribute_by_index(
my_projects.get_attribute_name(), w).sum()
result_data["%s_improvement_value" % project_type][grid_idx] = \
my_projects.get_attribute_by_index(
"improvement_value", w).sum()
grid_idx += 1
storage = StorageFactory().get_storage('dict_storage')
eventset_table_name = 'development_events_generated'
storage.write_table(table_name=eventset_table_name, table_data=result_data)
eventset = DevelopmentEventDataset(
in_storage = storage,
in_table_name = eventset_table_name,
id_name = [location_id_name, "scheduled_year"],
)
debug.print_debug("Number of events: " + str(grid_ids_for_any_project.size), 3)
return eventset
示例5: __init__
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
def __init__(self, resources=None, what="household", in_storage=None,
in_table_name=None, out_storage=None, out_table_name=None,
id_name=None, nchunks=None, debuglevel=0):
## TODO remove "what" arguement
debug = DebugPrinter(debuglevel)
debug.print_debug("Creating ControlTotalDataset object for "+what+".",2)
if not self.in_table_name_default:
self.in_table_name_default = "annual_" + what + "_control_totals"
if not self.out_table_name_default:
self.out_table_name_default = "annual_" + what + "_control_totals"
attributes_default = AttributeType.PRIMARY
#dataset_name = "control_total"
nchunks_default = 1
resources = ResourceFactory().get_resources_for_dataset(
self.dataset_name,
resources=resources,
in_storage=in_storage,
out_storage=out_storage,
in_table_name_pair=(in_table_name,self.in_table_name_default),
attributes_pair=(None, attributes_default),
out_table_name_pair=(out_table_name, self.out_table_name_default),
id_name_pair=(id_name,self.id_name_default),
nchunks_pair=(nchunks,nchunks_default),
debug_pair=(debug,None)
)
table_name = resources["in_table_name"]
if resources['id_name'] is None or len(resources['id_name'])== 0:
#if both self.id_name_default and id_name argument in __init__ is unspecified,
#ControlTotalDataset would use all attributes not beginning with "total"
#as id_name
id_names = []
column_names = resources["in_storage"].get_column_names(table_name)
for column_name in column_names:
if not re.search('^total', column_name):
id_names.append(column_name)
resources.merge({"id_name":resources["id_name"] + id_names})
Dataset.__init__(self, resources = resources)
示例6: ActiveDevelopmentsModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class ActiveDevelopmentsModel(Model):
"""
If you have questions, contact Jesse Ayers at MAG: [email protected]
"""
model_name = "Active Developments Model"
model_short_name = "ADM"
def __init__(self, debuglevel=0):
self.debug = DebugPrinter(debuglevel)
self.debuglevel = debuglevel
def run(
self,
percent_active_development=100,
build_minimum_units=False,
year=None,
start_year=None,
dataset_pool=None,
capacity_this_year_variable="mag_zone.active_development.capacity_this_year",
):
# General TODO:
# - deal w/ "other_spaces" columns
# - look at generalizing the weight used when building units
# - build unit test for minimum build feature
# LIST OF MODEL ASSUMPTIONS:
# - TODO: can i generalize the need for these pre-defined variables?
# - the model expects variables to exist that correspond to this naming pattern
# for every is_developing building_type_name in the building_types dataset:
# - total_<building_type_name>_units_col
# - occupied_<building_type_name>_units_col
# - building_type_name must be unique, lowercase, contain no spaces
# - target_vacancy.is_developing defines which building_types are considered
# Minimum build feature
# - The user can specify 2 additional columns in the building_types dataset:
# - adm_minimum_annual_build_units
# - adm_minimum_annual_build_max_year
# - If these fields are present, and the "build_minimum_units" run option is set to True
# - The model will utilize the information in the fields to build the minimum # of units annually
# specified in the building_types table up to the maximum year specified in the table. This feature
# is designed to simulate the case when demand is too low to build new units, some will be built anyway
# CURRENT LIST OF KNOWN ISSUES:
# -
# Get current simulation year
if year is None:
simulation_year = SimulationState().get_current_time()
else:
simulation_year = year
# only run if start_year
if start_year:
if start_year > simulation_year:
return
# Get the percent_active_development
# convert it to a float
percent_active_development = percent_active_development / 100.0
# Get the dataset pool
if dataset_pool is None:
dataset_pool = SessionConfiguration().get_dataset_pool()
else:
dataset_pool = dataset_pool
# get the active_developments dataset, subset it for actually active projects
# compute some variables
developments_dataset = dataset_pool.get_dataset("active_developments")
active_developments_capacity = developments_dataset.compute_variables([capacity_this_year_variable])
# TODO: need to further filter active developments, not only by start_year<=simulation_year,
# but also by whether they are built out, etc.
active_developments_index = where(developments_dataset.get_attribute("start_year") <= simulation_year)[0]
active_developments_capacity_this_year = active_developments_capacity[active_developments_index]
# debug help
self.debug.print_debug("\n*** BEGIN DEBUG INFO:", 1)
self.debug.print_debug("len(active_developments_index) = %s" % len(active_developments_index), 1)
self.debug.print_debug("len(active_developments_index) = %s" % len(active_developments_index), 1)
self.debug.print_debug(
"len(active_developments_capacity_this_year) = %s" % len(active_developments_capacity_this_year), 1
)
self.debug.print_debug("END DEBUG INFO ***\n", 1)
# get the target_vacancy_rates dataset
target_vacancy_rates_dataset = dataset_pool.get_dataset("target_vacancy")
# get target vacancy rates for this simulation_year
this_year_index = where(target_vacancy_rates_dataset.get_attribute("year") == simulation_year)[0]
target_vacancies_for_this_year = DatasetSubset(target_vacancy_rates_dataset, this_year_index)
# get some columns
bldg_types = target_vacancies_for_this_year.get_attribute("building_type_id")
tgt_vacancies = target_vacancies_for_this_year.get_attribute("target_vacancy")
# get unique building types
unique_building_types = unique1d(bldg_types)
# build a dictionary containing building_type_id:{'target_vacancy_rate':<float>}
developing_building_types_info = {}
for unique_building_type in unique_building_types:
#.........這裏部分代碼省略.........
示例7: Variable
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
#.........這裏部分代碼省略.........
except:
return
from opus_core.datasets.interaction_dataset import InteractionDataset
dataset = self.get_dataset()
dependencies = self.get_current_dependencies()
my_dataset_name = dataset.get_dataset_name()
for iattr in range(len(dependencies)): # iterate over dependent variables
dep_item = dependencies[iattr][0]
if isinstance(dep_item, str):
depvar_name = VariableName(dep_item)
else:
depvar_name = dep_item.get_variable_name() # dep_item should be an instance of AttributeBox
dataset_name = depvar_name.get_dataset_name()
if dataset_name == my_dataset_name:
ds = dataset
else:
ds = SessionConfiguration().get_dataset_from_pool(dataset_name)
#ds = dataset_pool.get_dataset('dataset_name')
if not isinstance(ds, InteractionDataset):
short_name = depvar_name.get_alias()
if short_name not in ds.get_id_name():
ds.flush_attribute(depvar_name)
def compute(self, dataset_pool):
"""Returns the result of this variable. Private use only."""
raise NotImplementedError, "compute() method not implemented for this variable."
def is_lag_variable(self):
"""Not a lag variable unless this function has been overridden to return True"""
return False
def _compute_and_check(self, dataset_pool):
if has_this_method(self, "pre_check"):
self.debug.print_debug("Running pre_check() for " + self.__class__.__module__,4)
self.pre_check(dataset_pool)
else:
self.debug.print_debug("No pre_check() defined for " + self.__class__.__module__,4)
values = self.compute(dataset_pool)
if has_this_method(self, "post_check"):
self.debug.print_debug("Running post_check() for " + self.__class__.__module__,4)
self.post_check(values, dataset_pool)
else:
self.debug.print_debug("No post_check() defined for " + self.__class__.__module__,4)
return values
def compute_with_dependencies(self, dataset_pool, arguments={}):
self._solve_dependencies(dataset_pool)
if self.should_check(arguments):
self.debug.print_debug("Computing and checking " + self.__class__.__module__,3)
values = self._compute_and_check(dataset_pool)
else:
values = self.compute(dataset_pool)
self.number_of_compute_runs += 1
if self._return_type:
return self._cast_values(values, arguments)
return values
if longlong == int32:
__long_size = 2**31 - 1
else:
__long_size = 2**63 - 1
_max_storable_value = {"bool8":1,
"int8":2**7 - 1,
"uint8":2**8 - 1,
"int16":2**15 - 1,
示例8: RateBasedModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class RateBasedModel(Model):
"""Chooses agents for relocation (according to probabilities computed by the probabilities class).
It includes all jobs that are unplaced. If probabilities is set to None, only unplaced agents are chosen.
The run method returns indices of the chosen agents.
"""
model_name = 'Rate Based Model'
def __init__(self,
probabilities = "opus_core.upc.rate_based_probabilities",
choices = "opus_core.random_choices",
model_name = None,
debuglevel=0,
resources=None
):
if model_name is not None:
self.model_name = model_name
self.debug = DebugPrinter(debuglevel)
self.upc_sequence = None
if probabilities is not None:
self.upc_sequence = UPCFactory().get_model(utilities=None,
probabilities=probabilities,
choices=choices,
debuglevel=debuglevel)
self.resources = merge_resources_if_not_None(resources)
def run(self, agent_set,
resources=None,
reset_attribute_value={}):
self.resources.merge(resources)
if agent_set.size()<=0:
agent_set.get_id_attribute()
if agent_set.size()<= 0:
self.debug.print_debug("Nothing to be done.",2)
return array([], dtype='int32')
if self.upc_sequence and (self.upc_sequence.probability_class.rate_set or self.resources.get('rate_set', None)):
self.resources.merge({agent_set.get_dataset_name():agent_set}) #to be compatible with old-style one-relocation_probabilities-module-per-model
self.resources.merge({'agent_set':agent_set})
choices = self.upc_sequence.run(resources=self.resources)
# choices have value 1 for agents that should be relocated, otherwise 0.
movers_indices = where(choices>0)[0]
else:
movers_indices = array([], dtype='int32')
if reset_attribute_value and movers_indices.size > 0:
for key, value in reset_attribute_value.items():
agent_set.modify_attribute(name=key,
data=resize(asarray(value), movers_indices.size),
index=movers_indices)
logger.log_status("Number of agents sampled based on rates: " + str(movers_indices.size))
return movers_indices
def prepare_for_run(self, what=None,
rate_dataset_name="rate",
rate_storage=None,
rate_table=None,
probability_attribute=None,
sample_rates=False,
n=100,
multiplicator=1,
flush_rates=True):
"""
what - unused, argument kept to be compatible with old code
"""
from opus_core.datasets.dataset_factory import DatasetFactory
from opus_core.session_configuration import SessionConfiguration
if (rate_storage is None) or ((rate_table is None) and (rate_dataset_name is None)):
return self.resources
if not rate_dataset_name:
rate_dataset_name = DatasetFactory().dataset_name_for_table(rate_table)
rates = DatasetFactory().search_for_dataset(rate_dataset_name,
package_order=SessionConfiguration().package_order,
arguments={'in_storage':rate_storage,
'in_table_name':rate_table,
}
)
if probability_attribute is not None:
rates.probability_attribute = probability_attribute
if sample_rates:
cache_storage=None
if flush_rates:
cache_storage=rate_storage
rates.sample_rates(n=n, cache_storage=cache_storage,
multiplicator=multiplicator)
self.resources.merge({rate_dataset_name:rates}) #to be compatible with old-style one-relocation_probabilities-module-per-model
self.resources.merge({'rate_set':rates})
return self.resources
示例9: upc_sequence
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class upc_sequence(object):
"""
Invokes computation of utilities, probabilities and choices.
"""
def __init__(self, utility_class=None, probability_class=None, choice_class=None, resources=None, debuglevel=0):
"""utility_class, probability_class, choice_class are objects of the corresponding classes.
They must have a method 'run'.
"""
self.utility_class = utility_class
self.probability_class = probability_class
self.choice_class = choice_class
self.resources = resources
if self.resources == None:
self.resources = Resources()
self.utilities = None
self.probabilities = None
self.choices = None
self.debug = DebugPrinter(debuglevel)
def run(self, data=None, coefficients=None, resources=None):
local_resources = Resources()
if resources:
local_resources.merge(resources)
last_result = self.compute_utilities(data=data, coefficients=coefficients, resources=local_resources)
this_result = self.compute_probabilities(resources=local_resources)
if this_result <> None:
last_result = this_result
this_result = self.compute_choices(resources=local_resources)
if this_result <> None:
last_result = this_result
return last_result
def compute_utilities(self, data=None, coefficients=None, resources=None):
if self.utility_class is None:
self.debug.print_debug("No utilities class given.", 10)
return None
self.debug.print_debug("compute_utilities ...", 3)
self.utilities = self.utility_class.run(data, coefficients, resources=resources)
return self.utilities
def compute_probabilities(self, resources=None):
if self.probability_class is None:
self.debug.print_debug("No probabilities class given.", 10)
return None
self.debug.print_debug("compute_probabilities ...", 3)
self.probabilities = self.probability_class.run(self.utilities, resources=resources)
return self.probabilities
def compute_choices(self, resources=None):
if self.choice_class is None:
self.debug.print_debug("No choices class given.", 10)
return None
self.debug.print_debug("compute_choices ...", 3)
self.choices = self.choice_class.run(self.probabilities, resources=resources)
return self.choices
def get_utilities(self):
return self.utilities
def get_probabilities(self):
return self.probabilities
def write_probability_sums(self):
self.probability_class.check_sum(self.probabilities)
def get_choices(self):
return self.choices
def get_choice_histogram(self, min=None, max=None, bins=None):
"""Give an array that represents a histogram of choices."""
if max == None:
max = self.choices.max() + 1
if min == None:
min = self.choices.min()
if bins == None:
bins = max - min
return histogram(self.get_choices(), min, max, bins)
def get_probabilities_sum(self):
"""Return probabilities sum along the first axis.
"""
probs = self.get_probabilities()
if probs.ndim < 2:
return probs.sum()
return reshape(sum(probs, 0), probs.shape[1])
def plot_choice_histograms(self, capacity, main=""):
self.plot_histogram(numrows=2)
self.plot_histogram_with_capacity(capacity)
def plot_histogram(self, main="", numrows=1, numcols=1, fignum=1):
"""Plot a histogram of choices and probability sums. Expects probabilities as (at least) a 2D array.
"""
from matplotlib.pylab import bar, xticks, yticks, title, text, axis, figure, subplot
probabilities = self.get_probabilities()
if probabilities.ndim < 2:
raise StandardError, "probabilities must have at least 2 dimensions."
alts = probabilities.shape[1]
#.........這裏部分代碼省略.........
示例10: BusinessTransitionModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class BusinessTransitionModel(Model):
"""Creates and removes businesses from business_set."""
model_name = "Business Transition Model"
location_id_name = "building_id"
variable_package = "urbansim_parcel"
def __init__(self, debuglevel=0):
self.debug = DebugPrinter(debuglevel)
def run(self, year, business_set,
control_totals,
data_objects=None,
resources=None):
business_id_name = business_set.get_id_name()[0]
control_totals.get_attribute("total_number_of_businesses")
idx = where(control_totals.get_attribute("year")==year)
sectors = unique(control_totals.get_attribute_by_index("building_use_id", idx))
max_id = business_set.get_id_attribute().max()
business_size = business_set.size()
new_businesses = {self.location_id_name:array([], dtype='int32'),
"building_use_id":array([], dtype='int32'),
business_id_name:array([], dtype='int32'),
"sqft":array([], dtype=int32),
"employees":array([], dtype=int32),}
compute_resources = Resources(data_objects)
# compute_resources.merge({job_building_types.get_dataset_name():job_building_types, "debug":self.debug})
business_set.compute_variables(
map(lambda x: "%s.%s.is_sector_%s"
% (self.variable_package, business_set.get_dataset_name(), x),
sectors),
resources = compute_resources)
remove_businesses = array([], dtype='int32')
for sector in sectors:
total_businesses = control_totals.get_data_element_by_id((year,sector)).total_number_of_businesses
is_in_sector = business_set.get_attribute("is_sector_%s" % sector)
diff = int(total_businesses - is_in_sector.astype(int8).sum())
if diff < 0: #
w = where(is_in_sector == 1)[0]
sample_array, non_placed, size_non_placed = \
get_array_without_non_placed_agents(business_set, w, -1*diff,
self.location_id_name)
remove_businesses = concatenate((remove_businesses, non_placed,
sample_noreplace(sample_array, max(0,abs(diff)-size_non_placed))))
if diff > 0: #
new_businesses[self.location_id_name]=concatenate((new_businesses[self.location_id_name],zeros((diff,), dtype="int32")))
new_businesses["building_use_id"]=concatenate((new_businesses["building_use_id"],
sector*ones((diff,), dtype="int32")))
available_business_index = where(is_in_sector)[0]
sampled_business = probsample_replace(available_business_index, diff, None)
new_businesses["sqft"] = concatenate((new_businesses["sqft"],
business_set.get_attribute("sqft")[sampled_business]))
new_businesses["employees"] = concatenate((new_businesses["employees"],
business_set.get_attribute("employees")[sampled_business]))
new_max_id = max_id+diff
new_businesses[business_id_name]=concatenate((new_businesses[business_id_name], arange(max_id+1, new_max_id+1)))
max_id = new_max_id
business_set.remove_elements(remove_businesses)
business_set.add_elements(new_businesses, require_all_attributes=False)
difference = business_set.size()-business_size
self.debug.print_debug("Difference in number of businesses: %s (original %s,"
" new %s, created %s, deleted %s)"
% (difference,
business_size,
business_set.size(),
new_businesses[business_id_name].size,
remove_businesses.size),
3)
self.debug.print_debug("Number of unplaced businesses: %s"
% where(business_set.get_attribute(self.location_id_name) <=0)[0].size,
3)
return difference
def prepare_for_run(self, storage, in_table_name, id_name, **kwargs):
from urbansim.datasets.control_total_dataset import ControlTotalDataset
control_totals = ControlTotalDataset(in_storage=storage,
in_table_name=in_table_name,
id_name=id_name
)
# sample_control_totals(storage, control_totals, **kwargs)
return control_totals
示例11: DevelopmentEventTransitionModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class DevelopmentEventTransitionModel(Model):
"""From given types of development projects, e.g. 'residential' or 'commercial', create
development events, one for a gridcell. Only placed projects are considered.
It returns an object of class DevelopmentEventDataset.
"""
def __init__(self, resources=None, debuglevel=0):
self.debug = DebugPrinter(debuglevel)
self.resources = resources
self.model_name = "Development Event Transition Model"
def run(self, developments, year=0, landuse_types=None, units=None, resources=None):
# landuse_types = ['residential', 'commercial', 'industrial', 'governmental']
# units=['residential_units', 'commercial_sqft','industrial_sqft','governmental_sqft']
if not isinstance(resources, Resources):
resources = Resources()
grid_ids_for_project = array([], dtype=int32)
if developments <> None:
grid_ids_for_project = developments.get_attribute("grid_id")
grid_ids_for_project = unique(grid_ids_for_project)
grid_ids_for_project = grid_ids_for_project[where(grid_ids_for_project>0)]
if len(grid_ids_for_project)==0: return
sizes = grid_ids_for_project.size
result_data = {"grid_id": grid_ids_for_project,
"scheduled_year":(year*ones((sizes,), dtype=int16)),
"development_type_id": zeros((sizes,),dtype=int16),
}
for unit in units:
result_data[unit] = zeros((sizes,), dtype=int32)
for project_type in landuse_types:
result_data["%s_improvement_value" % project_type] = zeros((sizes,), dtype=int32)
grid_idx=0
for grid_id in grid_ids_for_project:
w = where(developments.get_attribute('grid_id') == grid_id)[0]
if w.size>0:
result_data["development_type_id"][grid_idx] = \
developments.get_attribute_by_index("development_type_id", w[0])
for unit_variable in units:
result_data[unit_variable][grid_idx] = \
developments.get_attribute_by_index(unit_variable , w).sum()
result_data["%s_improvement_value" % unit_variable.split('_')[0]][grid_idx] = \
developments.get_attribute_by_index("improvement_value", w).sum()
grid_idx += 1
storage = StorageFactory().get_storage('dict_storage')
eventset_table_name = 'eventset'
storage.write_table(
table_name=eventset_table_name,
table_data=result_data,
)
eventset = DevelopmentEventDataset(
in_storage = storage,
in_table_name = eventset_table_name,
id_name=['grid_id', 'scheduled_year'],
)
self.debug.print_debug('Number of events: ' + str(grid_ids_for_project.size), 3)
return eventset
def prepare_for_run(self, model_configuration):
all_types = []
all_units = []
for atype in model_configuration['landuse_development_types']:
all_types.append(atype)
all_units.append(model_configuration['landuse_development_types'][atype]['units'])
return (all_types, all_units)
示例12: HouseholdTransitionModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class HouseholdTransitionModel(Model):
"""Creates and removes households from household_set. New households are duplicated from the existing households, keeping
the joint distribution of all characteristics.
"""
model_name = "Household Transition Model"
def __init__(self, location_id_name="grid_id", dataset_pool=None, debuglevel=0):
self.debug = DebugPrinter(debuglevel)
self.location_id_name = location_id_name
self.dataset_pool = self.create_dataset_pool(dataset_pool, ["urbansim", "opus_core"])
def run(self, year, household_set, control_totals, characteristics, resources=None):
self._do_initialize_for_run(household_set)
control_totals.get_attribute("total_number_of_households") # to make sure they are loaded
self.characteristics = characteristics
self.all_categories = self.characteristics.get_attribute("characteristic")
self.all_categories = array(map(lambda x: x.lower(), self.all_categories))
self.scaled_characteristic_names = get_distinct_names(self.all_categories).tolist()
self.marginal_characteristic_names = copy(control_totals.get_id_name())
index_year = self.marginal_characteristic_names.index("year")
self.marginal_characteristic_names.remove("year")
idx = where(control_totals.get_attribute("year")==year)[0]
self.control_totals_for_this_year = DatasetSubset(control_totals, idx)
self._do_run_for_this_year(household_set)
return self._update_household_set(household_set)
def _update_household_set(self, household_set):
index_of_duplicated_hhs = household_set.duplicate_rows(self.mapping_existing_hhs_to_new_hhs)
household_set.modify_attribute(name=self.location_id_name, data=-1 * ones((index_of_duplicated_hhs.size,),
dtype=household_set.get_data_type(self.location_id_name)),
index=index_of_duplicated_hhs)
household_set.remove_elements(self.remove_households)
if self.new_households[self.location_id_name].size > 0:
max_id = household_set.get_id_attribute().max()
self.new_households[self.household_id_name]=concatenate((self.new_households[self.household_id_name],
arange(max_id+1, max_id+self.new_households[self.location_id_name].size+1)))
household_set.add_elements(self.new_households, require_all_attributes=False)
difference = household_set.size()-self.household_size
self.debug.print_debug("Difference in number of households: %s"
" (original %s, new %s, created %s, deleted %s)"
% (difference,
self.household_size,
household_set.size(),
self.new_households[self.household_id_name].size + self.mapping_existing_hhs_to_new_hhs.size,
self.remove_households.size),
3)
if self.location_id_name in household_set.get_attribute_names():
self.debug.print_debug("Number of unplaced households: %s"
% where(household_set.get_attribute(self.location_id_name) <=0)[0].size,
3)
return difference
def _do_initialize_for_run(self, household_set):
self.household_id_name = household_set.get_id_name()[0]
self.new_households = {
self.location_id_name:array([], dtype=household_set.get_data_type(self.location_id_name, int32)),
self.household_id_name:array([], dtype=household_set.get_data_type(self.household_id_name, int32))
}
self.remove_households = array([], dtype='int32')
self.household_size = household_set.size()
self.max_id = household_set.get_id_attribute().max()
self.arrays_from_categories = {}
self.arrays_from_categories_mapping = {}
self.mapping_existing_hhs_to_new_hhs = array([], dtype=household_set.get_data_type(self.household_id_name, int32))
def _do_run_for_this_year(self, household_set):
self.household_set = household_set
groups = self.control_totals_for_this_year.get_id_attribute()
self.create_arrays_from_categories(self.household_set)
all_characteristics = self.arrays_from_categories.keys()
self.household_set.load_dataset_if_not_loaded(attributes = all_characteristics) # prevents from lazy loading to save runtime
idx_shape = []
number_of_combinations=1
num_attributes=len(all_characteristics)
for iattr in range(num_attributes):
attr = all_characteristics[iattr]
max_bins = self.arrays_from_categories[attr].max()+1
idx_shape.append(max_bins)
number_of_combinations=number_of_combinations*max_bins
if attr not in self.new_households.keys():
self.new_households[attr] = array([], dtype=self.household_set.get_data_type(attr, float32))
self.number_of_combinations = int(number_of_combinations)
idx_tmp = indices(tuple(idx_shape))
categories_index = zeros((self.number_of_combinations,num_attributes))
for i in range(num_attributes): #create indices of all combinations
categories_index[:,i] = idx_tmp[i].ravel()
categories_index_mapping = {}
for i in range(self.number_of_combinations):
categories_index_mapping[tuple(categories_index[i,].tolist())] = i
def get_category(values):
bins = map(lambda x, y: self.arrays_from_categories[x][int(y)], all_characteristics, values)
try:
#.........這裏部分代碼省略.........
示例13: create_from_parcel_and_development_template
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
#.........這裏部分代碼省略.........
in_storage=storage,
in_table_name='development_project_proposals',
)
return development_project_proposals
def _compute_filter(proposals):
if filter_attribute is not None:
proposals.compute_variables(filter_attribute, dataset_pool=dataset_pool,
resources=Resources(resources))
filter_index = where(proposals.get_attribute(filter_attribute) > 0)[0]
return filter_index
return None
def _subset_by_filter(proposals):
filter_index = _compute_filter(proposals)
if filter_index is not None:
proposals.subset_by_index(filter_index, flush_attributes_if_not_loaded=False)
return proposals
if parcel_index is not None:
index1 = parcel_index
else:
index1 = arange(parcel_dataset.size())
if template_index is not None:
index2 = template_index
else:
index2 = arange(development_template_dataset.size())
has_constraint_dataset = True
try:
constraints = dataset_pool.get_dataset("development_constraint")
constraints.load_dataset_if_not_loaded()
except:
has_constraint_dataset = False
if has_constraint_dataset:
constraint_types = unique(constraints.get_attribute("constraint_type")) #unit_per_acre, far etc
development_template_dataset.compute_variables(map(lambda x: "%s.%s" % (template_opus_path, x), constraint_types), dataset_pool)
parcel_dataset.get_development_constraints(constraints, dataset_pool,
index=index1,
consider_constraints_as_rules=consider_constraints_as_rules)
generic_land_use_type_ids = development_template_dataset.compute_variables("urbansim_parcel.development_template.generic_land_use_type_id",
dataset_pool=dataset_pool)
parcel_ids = parcel_dataset.get_id_attribute()
template_ids = development_template_dataset.get_id_attribute()
proposal_parcel_ids = array([],dtype="int32")
proposal_template_ids = array([],dtype="int32")
logger.start_block("Combine parcels, templates and constraints")
for i_template in index2:
this_template_id = template_ids[i_template]
fit_indicator = ones(index1.size, dtype="bool8")
if has_constraint_dataset:
generic_land_use_type_id = generic_land_use_type_ids[i_template]
for constraint_type, constraint in parcel_dataset.development_constraints[generic_land_use_type_id].iteritems():
template_attribute = development_template_dataset.get_attribute(constraint_type)[i_template] #density converted to constraint variable name
if template_attribute == 0:
continue
min_constraint = constraint[:, 0].copy()
max_constraint = constraint[:, 1].copy()
## treat -1 as unconstrainted
w_unconstr = min_constraint == -1
if w_unconstr.any():
min_constraint[w_unconstr] = template_attribute
w_unconstr = max_constraint == -1
if w_unconstr.any():
max_constraint[w_unconstr] = template_attribute
fit_indicator = logical_and(fit_indicator,
logical_and(template_attribute >= min_constraint,
template_attribute <= max_constraint))
if constraint_type == "units_per_acre":
res_units_capacity = parcel_dataset.get_attribute("parcel_sqft")[index1] * max_constraint / 43560.0
debug.print_debug("template_id %s (GLU ID %s) max total residential capacity %s, %s of them fit constraints " % (this_template_id, generic_land_use_type_id, res_units_capacity.sum(), (res_units_capacity * fit_indicator).sum() ), 12)
else:
non_res_capacity = parcel_dataset.get_attribute("parcel_sqft")[index1] * max_constraint
debug.print_debug("template_id %s (GLU ID %s) max total non residential capacity %s, %s of them fit constraints " % (this_template_id, generic_land_use_type_id, non_res_capacity.sum(), (non_res_capacity * fit_indicator).sum() ), 12)
proposal_parcel_ids = concatenate((proposal_parcel_ids, parcel_ids[index1[fit_indicator]]))
proposal_template_ids = concatenate( (proposal_template_ids, resize(array([this_template_id]), fit_indicator.sum())))
logger.end_block()
proposals = _create_project_proposals(proposal_parcel_ids, proposal_template_ids)
proposals = _subset_by_filter(proposals)
# eliminate proposals with zero units_proposed
units_proposed = proposals.compute_variables([proposed_units_variable], dataset_pool = dataset_pool)
where_up_greater_zero = where(units_proposed > 0)[0]
if where_up_greater_zero.size > 0:
proposals.subset_by_index(where_up_greater_zero, flush_attributes_if_not_loaded=False)
logger.log_status("proposal set created with %s proposals." % proposals.size())
#proposals.flush_dataset_if_low_memory_mode()
return proposals
示例14: RegressionModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class RegressionModel(ChunkModel):
model_name = "Regression Model"
model_short_name = "RM"
def __init__(self, regression_procedure="opus_core.linear_regression",
submodel_string=None,
run_config=None, estimate_config=None, debuglevel=0, dataset_pool=None):
self.debug = DebugPrinter(debuglevel)
self.dataset_pool = self.create_dataset_pool(dataset_pool)
self.regression = RegressionModelFactory().get_model(name=regression_procedure)
if self.regression == None:
raise StandardError, "No regression procedure given."
self.submodel_string = submodel_string
self.run_config = run_config
if self.run_config == None:
self.run_config = Resources()
if not isinstance(self.run_config,Resources) and isinstance(self.run_config, dict):
self.run_config = Resources(self.run_config)
self.estimate_config = estimate_config
if self.estimate_config == None:
self.estimate_config = Resources()
if not isinstance(self.estimate_config,Resources) and isinstance(self.estimate_config, dict):
self.estimate_config = Resources(self.estimate_config)
self.data = {}
self.coefficient_names = {}
ChunkModel.__init__(self)
self.get_status_for_gui().initialize_pieces(3, pieces_description = array(['initialization', 'computing variables', 'submodel: 1']))
def run(self, specification, coefficients, dataset, index=None, chunk_specification=None,
data_objects=None, run_config=None, initial_values=None, procedure=None, debuglevel=0):
"""'specification' is of type EquationSpecification,
'coefficients' is of type Coefficients,
'dataset' is of type Dataset,
'index' are indices of individuals in dataset for which
the model runs. If it is None, the whole dataset is considered.
'chunk_specification' determines number of chunks in which the simulation is processed.
'data_objects' is a dictionary where each key is the name of an data object
('zone', ...) and its value is an object of class Dataset.
'run_config' is of type Resources, it gives additional arguments for the run.
If 'procedure' is given, it overwrites the regression_procedure of the constructor.
'initial_values' is an array of the initial values of the results. It will be overwritten
by the results for those elements that are handled by the model (defined by submodels in the specification).
By default the results are initialized with 0.
'debuglevel' overwrites the constructor 'debuglevel'.
"""
self.debug.flag = debuglevel
if run_config == None:
run_config = Resources()
if not isinstance(run_config,Resources) and isinstance(run_config, dict):
run_config = Resources(run_config)
self.run_config = run_config.merge_with_defaults(self.run_config)
self.run_config.merge({"debug":self.debug})
if data_objects is not None:
self.dataset_pool.add_datasets_if_not_included(data_objects)
self.dataset_pool.replace_dataset(dataset.get_dataset_name(), dataset)
if procedure is not None:
self.regression = RegressionModelFactory().get_model(name=procedure)
if initial_values is None:
self.initial_values = zeros((dataset.size(),), dtype=float32)
else:
self.initial_values = zeros((dataset.size(),), dtype=initial_values.dtype)
self.initial_values[index] = initial_values
if dataset.size()<=0: # no data loaded yet
dataset.get_id_attribute()
if index == None:
index = arange(dataset.size())
result = ChunkModel.run(self, chunk_specification, dataset, index, float32,
specification=specification, coefficients=coefficients)
return result
def run_chunk (self, index, dataset, specification, coefficients):
self.specified_coefficients = SpecifiedCoefficients().create(coefficients, specification, neqs=1)
compute_resources = Resources({"debug":self.debug})
submodels = self.specified_coefficients.get_submodels()
self.get_status_for_gui().update_pieces_using_submodels(submodels=submodels, leave_pieces=2)
self.map_agents_to_submodels(submodels, self.submodel_string, dataset, index,
dataset_pool=self.dataset_pool, resources = compute_resources)
variables = self.specified_coefficients.get_full_variable_names_without_constants()
self.debug.print_debug("Compute variables ...",4)
self.increment_current_status_piece()
dataset.compute_variables(variables, dataset_pool = self.dataset_pool, resources = compute_resources)
data = {}
coef = {}
outcome=self.initial_values[index].copy()
for submodel in submodels:
coef[submodel] = SpecifiedCoefficientsFor1Submodel(self.specified_coefficients,submodel)
self.coefficient_names[submodel] = coef[submodel].get_coefficient_names_without_constant()[0,:]
self.debug.print_debug("Compute regression for submodel " +str(submodel),4)
self.increment_current_status_piece()
self.data[submodel] = dataset.create_regression_data(coef[submodel],
#.........這裏部分代碼省略.........
示例15: BusinessTransitionModel
# 需要導入模塊: from opus_core.misc import DebugPrinter [as 別名]
# 或者: from opus_core.misc.DebugPrinter import print_debug [as 別名]
class BusinessTransitionModel(Model):
"""Creates and removes businesses from business_set."""
model_name = "Business Transition Model"
location_id_name = "building_id"
variable_package = "sanfrancisco"
def __init__(self, debuglevel=0):
self.debug = DebugPrinter(debuglevel)
def run(self, year, business_set,
control_totals,
dataset_pool=None,
resources=None):
self.business_id_name = business_set.get_id_name()[0]
control_for_businesses = False # If this is False, it is controlled for jobs
if "total_number_of_businesses" in control_totals.get_known_attribute_names():
control_for_businesses = True
control_totals.get_attribute("total_number_of_businesses")
else:
control_totals.get_attribute("total_number_of_jobs")
idx = where(control_totals.get_attribute("year")==year)
sectors = unique(control_totals.get_attribute_by_index("sector_id", idx))
self.max_id = business_set.get_id_attribute().max()
business_size = business_set.size()
self.new_businesses = {self.location_id_name:array([], dtype='int32'),
"sector_id":array([], dtype='int32'),
self.business_id_name:array([], dtype='int32'),
"sqft":array([], dtype=int32),
"employment":array([], dtype='int32'),
"activity_id":array([], dtype='int32')}
business_set.compute_variables(
map(lambda x: "%s.%s.is_of_sector_%s"
% (self.variable_package, business_set.get_dataset_name(), x), sectors),
dataset_pool=dataset_pool, resources = resources)
self.remove_businesses = array([], dtype='int32')
for sector in sectors:
b_is_in_sector = business_set.get_attribute("is_of_sector_%s" % sector)
if control_for_businesses:
total_businesses = control_totals.get_data_element_by_id((year,sector)).total_number_of_businesses
diff = int(total_businesses - b_is_in_sector.astype(int8).sum())
self._do_sector_for_businesses(sector, diff, business_set, b_is_in_sector)
else:
total_jobs = control_totals.get_data_element_by_id((year,sector)).total_number_of_jobs
diff = int(total_jobs - business_set.get_attribute_by_index("employment", b_is_in_sector).sum())
self._do_sector_for_jobs(sector, diff, business_set, b_is_in_sector)
business_set.remove_elements(self.remove_businesses)
business_set.add_elements(self.new_businesses, require_all_attributes=False)
difference = business_set.size()-business_size
self.debug.print_debug("Difference in number of businesses: %s (original %s,"
" new %s, created %s, deleted %s)"
% (difference,
business_size,
business_set.size(),
self.new_businesses[self.business_id_name].size,
self.remove_businesses.size),
3)
self.debug.print_debug("Number of unplaced businesses: %s"
% where(business_set.get_attribute(self.location_id_name) <=0)[0].size,
3)
return difference
def _do_sector_for_businesses(self, sector, diff, business_set, is_in_sector):
available_business_index = where(is_in_sector)[0]
if diff < 0: #
sample_array, non_placed, size_non_placed = \
get_array_without_non_placed_agents(business_set, available_business_index, -1*diff,
self.location_id_name)
self.remove_businesses = concatenate((self.remove_businesses, non_placed,
sample_noreplace(sample_array, max(0,abs(diff)-size_non_placed))))
if diff > 0: #
self.new_businesses[self.location_id_name]=concatenate((self.new_businesses[self.location_id_name],zeros((diff,))))
self.new_businesses["sector_id"]=concatenate((self.new_businesses["sector_id"], sector*ones((diff,))))
sampled_business = probsample_replace(available_business_index, diff, None)
self.new_businesses["sqft"] = concatenate((self.new_businesses["sqft"],
business_set.get_attribute("sqft")[sampled_business]))
self.new_businesses["employment"] = concatenate((self.new_businesses["employment"],
business_set.get_attribute("employment")[sampled_business]))
self.new_businesses["activity_id"] = concatenate((self.new_businesses["activity_id"],
business_set.get_attribute("activity_id")[sampled_business]))
new_max_id = self.max_id+diff
self.new_businesses[self.business_id_name]=concatenate((self.new_businesses[self.business_id_name],
arange(self.max_id+1, new_max_id+1)))
self.max_id = new_max_id
def _do_sector_for_jobs(self, sector, diff, business_set, b_is_in_sector):
# diff is a difference in jobs (not businesses)
employment = business_set.get_attribute('employment')
available_business_index = where(b_is_in_sector)[0]
if diff < 0: #
placed, non_placed, size_non_placed = \
get_array_without_non_placed_agents(business_set, available_business_index, -1*available_business_index.size,
self.location_id_name)
consider_for_removing = concatenate((permutation(non_placed), permutation(placed)))
empl_cumsum = cumsum(employment[consider_for_removing])
#.........這裏部分代碼省略.........