當前位置: 首頁>>代碼示例>>Python>>正文


Python InferenceElement.getLabel方法代碼示例

本文整理匯總了Python中opfutils.InferenceElement.getLabel方法的典型用法代碼示例。如果您正苦於以下問題:Python InferenceElement.getLabel方法的具體用法?Python InferenceElement.getLabel怎麽用?Python InferenceElement.getLabel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在opfutils.InferenceElement的用法示例。


在下文中一共展示了InferenceElement.getLabel方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __getListMetaInfo

# 需要導入模塊: from opfutils import InferenceElement [as 別名]
# 或者: from opfutils.InferenceElement import getLabel [as 別名]
  def __getListMetaInfo(self, inferenceElement):
    """ Get field metadata information for inferences that are of list type
    TODO: Right now we assume list inferences are associated with the input field
    metadata
    """
    fieldMetaInfo = []
    inferenceLabel = InferenceElement.getLabel(inferenceElement)

    for inputFieldMeta in self.__inputFieldsMeta:
      if InferenceElement.getInputElement(inferenceElement):
        outputFieldMeta = FieldMetaInfo(
          name=inputFieldMeta.name + ".actual",
          type=inputFieldMeta.type,
          special=inputFieldMeta.special
        )

      predictionField = FieldMetaInfo(
        name=inputFieldMeta.name + "." + inferenceLabel,
        type=inputFieldMeta.type,
        special=inputFieldMeta.special
      )

      fieldMetaInfo.append(outputFieldMeta)
      fieldMetaInfo.append(predictionField)

    return fieldMetaInfo
開發者ID:runt18,項目名稱:nupic,代碼行數:28,代碼來源:opfbasicenvironment.py

示例2: __getDictMetaInfo

# 需要導入模塊: from opfutils import InferenceElement [as 別名]
# 或者: from opfutils.InferenceElement import getLabel [as 別名]
  def __getDictMetaInfo(self, inferenceElement, inferenceDict):
    """Get field metadate information for inferences that are of dict type"""
    fieldMetaInfo = []
    inferenceLabel = InferenceElement.getLabel(inferenceElement)

    if InferenceElement.getInputElement(inferenceElement):
      fieldMetaInfo.append(FieldMetaInfo(name=inferenceLabel+".actual",
                                         type=FieldMetaType.string,
                                         special = ''))

    keys = sorted(inferenceDict.keys())
    for key in keys:
      fieldMetaInfo.append(FieldMetaInfo(name=inferenceLabel+"."+str(key),
                                         type=FieldMetaType.string,
                                         special=''))


    return fieldMetaInfo
開發者ID:runt18,項目名稱:nupic,代碼行數:20,代碼來源:opfbasicenvironment.py

示例3: __openDatafile

# 需要導入模塊: from opfutils import InferenceElement [as 別名]
# 或者: from opfutils.InferenceElement import getLabel [as 別名]
  def __openDatafile(self, modelResult):
    """Open the data file and write the header row"""

    # Write reset bit
    resetFieldMeta = FieldMetaInfo(
      name="reset",
      type=FieldMetaType.integer,
      special = FieldMetaSpecial.reset)

    self.__outputFieldsMeta.append(resetFieldMeta)


    # -----------------------------------------------------------------------
    # Write each of the raw inputs that go into the encoders
    rawInput = modelResult.rawInput
    rawFields = rawInput.keys()
    rawFields.sort()
    for field in rawFields:
      if field.startswith('_') or field == 'reset':
        continue
      value = rawInput[field]
      meta = FieldMetaInfo(name=field, type=FieldMetaType.string,
                           special=FieldMetaSpecial.none)
      self.__outputFieldsMeta.append(meta)
      self._rawInputNames.append(field)


    # -----------------------------------------------------------------------
    # Handle each of the inference elements
    for inferenceElement, value in modelResult.inferences.iteritems():
      inferenceLabel = InferenceElement.getLabel(inferenceElement)

      # TODO: Right now we assume list inferences are associated with
      # The input field metadata
      if type(value) in (list, tuple):
        # Append input and prediction field meta-info
        self.__outputFieldsMeta.extend(self.__getListMetaInfo(inferenceElement))

      elif isinstance(value, dict):
          self.__outputFieldsMeta.extend(self.__getDictMetaInfo(inferenceElement,
                                                                value))
      else:

        if InferenceElement.getInputElement(inferenceElement):
          self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel+".actual",
                type=FieldMetaType.string, special = ''))
        self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel,
                type=FieldMetaType.string, special = ''))

    if self.__metricNames:
      for metricName in self.__metricNames:
        metricField = FieldMetaInfo(
          name = metricName,
          type = FieldMetaType.float,
          special = FieldMetaSpecial.none)

        self.__outputFieldsMeta.append(metricField)

    # Create the inference directory for our experiment
    inferenceDir = _FileUtils.createExperimentInferenceDir(self.__experimentDir)

    # Consctruct the prediction dataset file path
    filename = (self.__label + "." +
               opfutils.InferenceType.getLabel(self.__inferenceType) +
               ".predictionLog.csv")
    self.__datasetPath = os.path.join(inferenceDir, filename)

    # Create the output dataset
    print "OPENING OUTPUT FOR PREDICTION WRITER AT: {0!r}".format(self.__datasetPath)
    print "Prediction field-meta: {0!r}".format([tuple(i) for i in self.__outputFieldsMeta])
    self.__dataset = FileRecordStream(streamID=self.__datasetPath, write=True,
                                     fields=self.__outputFieldsMeta)

    # Copy data from checkpoint cache
    if self.__checkpointCache is not None:
      self.__checkpointCache.seek(0)

      reader = csv.reader(self.__checkpointCache, dialect='excel')

      # Skip header row
      try:
        header = reader.next()
      except StopIteration:
        print "Empty record checkpoint initializer for {0!r}".format(self.__datasetPath)
      else:
        assert tuple(self.__dataset.getFieldNames()) == tuple(header), \
          "dataset.getFieldNames(): {0!r}; predictionCheckpointFieldNames: {1!r}".format(
          tuple(self.__dataset.getFieldNames()), tuple(header))

      # Copy the rows from checkpoint
      numRowsCopied = 0
      while True:
        try:
          row = reader.next()
        except StopIteration:
          break

        #print "DEBUG: restoring row from checkpoint: %r" % (row,)

        self.__dataset.appendRecord(row)
#.........這裏部分代碼省略.........
開發者ID:runt18,項目名稱:nupic,代碼行數:103,代碼來源:opfbasicenvironment.py


注:本文中的opfutils.InferenceElement.getLabel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。