本文整理匯總了Python中opfutils.InferenceElement.getLabel方法的典型用法代碼示例。如果您正苦於以下問題:Python InferenceElement.getLabel方法的具體用法?Python InferenceElement.getLabel怎麽用?Python InferenceElement.getLabel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類opfutils.InferenceElement
的用法示例。
在下文中一共展示了InferenceElement.getLabel方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __getListMetaInfo
# 需要導入模塊: from opfutils import InferenceElement [as 別名]
# 或者: from opfutils.InferenceElement import getLabel [as 別名]
def __getListMetaInfo(self, inferenceElement):
""" Get field metadata information for inferences that are of list type
TODO: Right now we assume list inferences are associated with the input field
metadata
"""
fieldMetaInfo = []
inferenceLabel = InferenceElement.getLabel(inferenceElement)
for inputFieldMeta in self.__inputFieldsMeta:
if InferenceElement.getInputElement(inferenceElement):
outputFieldMeta = FieldMetaInfo(
name=inputFieldMeta.name + ".actual",
type=inputFieldMeta.type,
special=inputFieldMeta.special
)
predictionField = FieldMetaInfo(
name=inputFieldMeta.name + "." + inferenceLabel,
type=inputFieldMeta.type,
special=inputFieldMeta.special
)
fieldMetaInfo.append(outputFieldMeta)
fieldMetaInfo.append(predictionField)
return fieldMetaInfo
示例2: __getDictMetaInfo
# 需要導入模塊: from opfutils import InferenceElement [as 別名]
# 或者: from opfutils.InferenceElement import getLabel [as 別名]
def __getDictMetaInfo(self, inferenceElement, inferenceDict):
"""Get field metadate information for inferences that are of dict type"""
fieldMetaInfo = []
inferenceLabel = InferenceElement.getLabel(inferenceElement)
if InferenceElement.getInputElement(inferenceElement):
fieldMetaInfo.append(FieldMetaInfo(name=inferenceLabel+".actual",
type=FieldMetaType.string,
special = ''))
keys = sorted(inferenceDict.keys())
for key in keys:
fieldMetaInfo.append(FieldMetaInfo(name=inferenceLabel+"."+str(key),
type=FieldMetaType.string,
special=''))
return fieldMetaInfo
示例3: __openDatafile
# 需要導入模塊: from opfutils import InferenceElement [as 別名]
# 或者: from opfutils.InferenceElement import getLabel [as 別名]
def __openDatafile(self, modelResult):
"""Open the data file and write the header row"""
# Write reset bit
resetFieldMeta = FieldMetaInfo(
name="reset",
type=FieldMetaType.integer,
special = FieldMetaSpecial.reset)
self.__outputFieldsMeta.append(resetFieldMeta)
# -----------------------------------------------------------------------
# Write each of the raw inputs that go into the encoders
rawInput = modelResult.rawInput
rawFields = rawInput.keys()
rawFields.sort()
for field in rawFields:
if field.startswith('_') or field == 'reset':
continue
value = rawInput[field]
meta = FieldMetaInfo(name=field, type=FieldMetaType.string,
special=FieldMetaSpecial.none)
self.__outputFieldsMeta.append(meta)
self._rawInputNames.append(field)
# -----------------------------------------------------------------------
# Handle each of the inference elements
for inferenceElement, value in modelResult.inferences.iteritems():
inferenceLabel = InferenceElement.getLabel(inferenceElement)
# TODO: Right now we assume list inferences are associated with
# The input field metadata
if type(value) in (list, tuple):
# Append input and prediction field meta-info
self.__outputFieldsMeta.extend(self.__getListMetaInfo(inferenceElement))
elif isinstance(value, dict):
self.__outputFieldsMeta.extend(self.__getDictMetaInfo(inferenceElement,
value))
else:
if InferenceElement.getInputElement(inferenceElement):
self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel+".actual",
type=FieldMetaType.string, special = ''))
self.__outputFieldsMeta.append(FieldMetaInfo(name=inferenceLabel,
type=FieldMetaType.string, special = ''))
if self.__metricNames:
for metricName in self.__metricNames:
metricField = FieldMetaInfo(
name = metricName,
type = FieldMetaType.float,
special = FieldMetaSpecial.none)
self.__outputFieldsMeta.append(metricField)
# Create the inference directory for our experiment
inferenceDir = _FileUtils.createExperimentInferenceDir(self.__experimentDir)
# Consctruct the prediction dataset file path
filename = (self.__label + "." +
opfutils.InferenceType.getLabel(self.__inferenceType) +
".predictionLog.csv")
self.__datasetPath = os.path.join(inferenceDir, filename)
# Create the output dataset
print "OPENING OUTPUT FOR PREDICTION WRITER AT: {0!r}".format(self.__datasetPath)
print "Prediction field-meta: {0!r}".format([tuple(i) for i in self.__outputFieldsMeta])
self.__dataset = FileRecordStream(streamID=self.__datasetPath, write=True,
fields=self.__outputFieldsMeta)
# Copy data from checkpoint cache
if self.__checkpointCache is not None:
self.__checkpointCache.seek(0)
reader = csv.reader(self.__checkpointCache, dialect='excel')
# Skip header row
try:
header = reader.next()
except StopIteration:
print "Empty record checkpoint initializer for {0!r}".format(self.__datasetPath)
else:
assert tuple(self.__dataset.getFieldNames()) == tuple(header), \
"dataset.getFieldNames(): {0!r}; predictionCheckpointFieldNames: {1!r}".format(
tuple(self.__dataset.getFieldNames()), tuple(header))
# Copy the rows from checkpoint
numRowsCopied = 0
while True:
try:
row = reader.next()
except StopIteration:
break
#print "DEBUG: restoring row from checkpoint: %r" % (row,)
self.__dataset.appendRecord(row)
#.........這裏部分代碼省略.........