當前位置: 首頁>>代碼示例>>Python>>正文


Python RuptureContext.mag方法代碼示例

本文整理匯總了Python中openquake.hazardlib.gsim.base.RuptureContext.mag方法的典型用法代碼示例。如果您正苦於以下問題:Python RuptureContext.mag方法的具體用法?Python RuptureContext.mag怎麽用?Python RuptureContext.mag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在openquake.hazardlib.gsim.base.RuptureContext的用法示例。


在下文中一共展示了RuptureContext.mag方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_mag_greater_8pt5

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
    def test_mag_greater_8pt5(self):
        gmpe = SadighEtAl1997()

        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.rake =  0.0
        dctx.rrup = numpy.array([0., 1.])
        sctx.vs30 = numpy.array([800., 800.])

        rctx.mag = 9.0
        mean_rock_9, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        rctx.mag = 8.5
        mean_rock_8pt5, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        numpy.testing.assert_allclose(mean_rock_9, mean_rock_8pt5)

        sctx.vs30 = numpy.array([300., 300.])
        rctx.mag = 9.0
        mean_soil_9, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        rctx.mag = 8.5
        mean_soil_8pt5, _ = gmpe.get_mean_and_stddevs(
            sctx, rctx, dctx, PGA(), [StdDev.TOTAL]
        )
        numpy.testing.assert_allclose(mean_soil_9, mean_soil_8pt5)
開發者ID:gem,項目名稱:oq-hazardlib,代碼行數:33,代碼來源:sadigh_1997_test.py

示例2: test_get_mean_and_stddevs

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_get_mean_and_stddevs(self):
     """
     Tests mean and standard deviations without amplification
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.array([2.0, 2.0, 1.0, 0.5, 1.0E-20])
     # PGA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGA(),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
     # SA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.SA(1.0),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.8 * np.ones(5), 5)
     # PGV
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGV(),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean),
                                          10. * expected_mean,
                                          5)
     np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:35,代碼來源:gsim_table_test.py

示例3: test_get_mean_table

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_get_mean_table(self, idx=0):
     """
     Test the retrieval of the mean amplification tables for a given
     magnitude and IMT
     """
     rctx = RuptureContext()
     rctx.mag = 6.0
     # PGA
     expected_table = np.ones([10, 2])
     expected_table[:, self.IDX] *= 1.5
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.PGA(), rctx),
         expected_table)
     # SA
     expected_table[:, self.IDX] = 2.0 * np.ones(10)
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.SA(0.5), rctx),
         expected_table)
     # SA (period interpolation)
     interpolator = interp1d(np.log10(self.amp_table.periods),
                             np.log10(np.array([1.5, 2.0, 0.5])))
     period = 0.3
     expected_table[:, self.IDX] = (
         10.0 ** interpolator(np.log10(period))) * np.ones(10.)
     np.testing.assert_array_almost_equal(
         self.amp_table.get_mean_table(imt_module.SA(period), rctx),
         expected_table)
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:29,代碼來源:gsim_table_test.py

示例4: test_get_mean_and_stddevs_good

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_get_mean_and_stddevs_good(self):
     """
     Tests the full execution of the GMPE tables for valid data
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     rctx.rake = 90.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.array([20.0, 20.0, 10.0, 5.0, 1.0E-19])
     # PGA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.PGA(),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.25 * np.ones(5), 5)
     # SA
     mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx,
                                             imt_module.SA(1.0),
                                             stddevs)
     np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5)
     np.testing.assert_array_almost_equal(sigma[0], 0.4 * np.ones(5), 5)
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:28,代碼來源:gsim_table_test.py

示例5: test_mag_dist_outside_range

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
    def test_mag_dist_outside_range(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        # rupture with Mw = 3 (Mblg=2.9434938048208452) at rhypo = 1 must give
        # same mean as rupture with Mw = 4.4 (Mblg=4.8927897867183798) at
        # rhypo = 10
        rctx.mag = 2.9434938048208452
        dctx.rhypo = numpy.array([1])
        mean_mw3_d1, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        rctx.mag = 4.8927897867183798
        dctx.rhypo = numpy.array([10])
        mean_mw4pt4_d10, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        self.assertAlmostEqual(float(mean_mw3_d1), float(mean_mw4pt4_d10))

        # rupture with Mw = 9 (Mblg = 8.2093636421088814) at rhypo = 1500 km
        # must give same mean as rupture with Mw = 8.2
        # (Mblg = 7.752253535347597) at rhypo = 1000
        rctx.mag = 8.2093636421088814
        dctx.rhypo = numpy.array([1500.])
        mean_mw9_d1500, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        rctx.mag = 7.752253535347597
        dctx.rhypo = numpy.array([1000.])
        mean_mw8pt2_d1000, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        self.assertAlmostEqual(mean_mw9_d1500, mean_mw8pt2_d1000)
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:40,代碼來源:frankel_1996_test.py

示例6: test_dist_not_in_increasing_order

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
    def test_dist_not_in_increasing_order(self):
        sctx = SitesContext()
        rctx = RuptureContext()
        dctx = DistancesContext()

        rctx.mag = 5.
        dctx.rhypo = numpy.array([150, 100])
        mean_150_100, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )

        dctx.rhypo = numpy.array([100, 150])
        mean_100_150, _ = self.GSIM_CLASS().get_mean_and_stddevs(
            sctx, rctx, dctx, SA(0.1, 5), [StdDev.TOTAL]
        )
        self.assertAlmostEqual(mean_150_100[1], mean_100_150[0])
        self.assertAlmostEqual(mean_150_100[0], mean_100_150[1])
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:19,代碼來源:frankel_1996_test.py

示例7: test_get_mean_stddevs_unsupported_stddev

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_get_mean_stddevs_unsupported_stddev(self):
     """
     Tests the execution of the GMPE with an unsupported standard deviation
     type
     """
     gsim = GMPETable(gmpe_table=self.TABLE_FILE)
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Test values at the given distances and those outside range
     dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0])
     sctx = SitesContext()
     sctx.vs30 = 1000. * np.ones(5)
     stddevs = [const.StdDev.TOTAL, const.StdDev.INTER_EVENT]
     with self.assertRaises(ValueError) as ve:
         gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt_module.PGA(),
                                   stddevs)
     self.assertEqual(str(ve.exception),
                      "Standard Deviation type Inter event not supported")
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:21,代碼來源:gsim_table_test.py

示例8: test_get_amplification_factors

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_get_amplification_factors(self):
     """
     Tests the amplification tables
     """
     rctx = RuptureContext()
     rctx.mag = 6.0
     dctx = DistancesContext()
     # Takes distances at the values found in the table (not checking
     # distance interpolation)
     dctx.rjb = np.copy(self.amp_table.distances[:, 0, 0])
     # Test Vs30 is 700.0 m/s midpoint between the 400 m/s and 1000 m/s
     # specified in the table
     sctx = SitesContext()
     sctx.vs30 = 700.0 * np.ones_like(dctx.rjb)
     stddevs = [const.StdDev.TOTAL]
     expected_mean = np.ones_like(dctx.rjb)
     expected_sigma = np.ones_like(dctx.rjb)
     # Check PGA and PGV
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.PGA(), sctx, rctx, dctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 1.5) * expected_mean)
     np.testing.assert_array_almost_equal(
         sigma_amp[0],
         0.9 * expected_mean)
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.PGV(), sctx, rctx, dctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 0.5) * expected_mean)
     np.testing.assert_array_almost_equal(
         sigma_amp[0],
         0.9 * expected_mean)
     # Sa (0.5)
     mean_amp, sigma_amp = self.amp_table.get_amplification_factors(
         imt_module.SA(0.5), sctx, rctx, dctx.rjb, stddevs)
     np.testing.assert_array_almost_equal(
         mean_amp,
         midpoint(1.0, 2.0) * expected_mean)
     np.testing.assert_array_almost_equal(
         sigma_amp[0],
         0.9 * expected_mean)
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:45,代碼來源:gsim_table_test.py

示例9: check_gmpe_adjustments

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
    def check_gmpe_adjustments(self, adj_gmpe_set, original_gmpe):
        """
        Takes a set of three adjusted GMPEs representing the "low", "middle"
        and "high" stress drop adjustments for Germany and compares them
        against the original "target" GMPE for a variety of magnitudes
        and styles of fauling.
        """
        low_gsim, mid_gsim, high_gsim = adj_gmpe_set
        tot_std = [const.StdDev.TOTAL]
        for imt in self.imts:
            for mag in self.mags:
                for rake in self.rakes:
                    rctx = RuptureContext()
                    rctx.mag = mag
                    rctx.rake = rake
                    rctx.hypo_depth = 10.
                    # Get "original" values
                    mean = original_gmpe.get_mean_and_stddevs(self.sctx, rctx,
                                                              self.dctx, imt,
                                                              tot_std)[0]
                    mean = np.exp(mean)
                    # Get "low" adjustments (0.75 times the original)
                    low_mean = low_gsim.get_mean_and_stddevs(self.sctx, rctx,
                                                             self.dctx, imt,
                                                             tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(low_mean) / mean, 0.75 * np.ones_like(low_mean))

                    # Get "middle" adjustments (1.25 times the original)
                    mid_mean = mid_gsim.get_mean_and_stddevs(self.sctx, rctx,
                                                             self.dctx, imt,
                                                             tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(mid_mean) / mean, 1.25 * np.ones_like(mid_mean))

                    # Get "high" adjustments (1.5 times the original)
                    high_mean = high_gsim.get_mean_and_stddevs(self.sctx, rctx,
                                                               self.dctx, imt,
                                                               tot_std)[0]
                    np.testing.assert_array_almost_equal(
                        np.exp(high_mean) / mean,
                        1.5 * np.ones_like(high_mean))
開發者ID:digitalsatori,項目名稱:oq-engine,代碼行數:44,代碼來源:germany_2018_test.py

示例10: test_get_sigma_table

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_get_sigma_table(self):
     """
     Test the retrieval of the standard deviation modification tables
     for a given magnitude and IMT
     """
     rctx = RuptureContext()
     rctx.mag = 6.0
     # PGA
     expected_table = np.ones([10, 2])
     expected_table[:, self.IDX] *= 0.8
     stddevs = ["Total"]
     pga_table = self.amp_table.get_sigma_tables(imt_module.PGA(),
                                                 rctx,
                                                 stddevs)[0]
     np.testing.assert_array_almost_equal(pga_table, expected_table)
     # SA (for coverage)
     sa_table = self.amp_table.get_sigma_tables(imt_module.SA(0.3),
                                                rctx,
                                                stddevs)[0]
     np.testing.assert_array_almost_equal(sa_table, expected_table)
開發者ID:HadiGhofrani,項目名稱:oq-hazardlib,代碼行數:22,代碼來源:gsim_table_test.py

示例11: test_rhypo_smaller_than_15

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def test_rhypo_smaller_than_15(self):
     # test the calculation in case of rhypo distances less than 15 km
     # (for rhypo=0 the distance term has a singularity). In this case the
     # method should return values equal to the ones obtained by clipping
     # distances at 15 km.
     sctx = SitesContext()
     sctx.vs30 = numpy.array([800.0, 800.0, 800.0])
     rctx = RuptureContext()
     rctx.mag = 5.0
     rctx.rake = 0
     dctx = DistancesContext()
     dctx.rhypo = numpy.array([0.0, 10.0, 16.0])
     dctx.rhypo.flags.writeable = False
     mean_0, stds_0 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     setattr(dctx, 'rhypo', numpy.array([15.0, 15.0, 16.0]))
     mean_15, stds_15 = self.GSIM_CLASS().get_mean_and_stddevs(
         sctx, rctx, dctx, PGA(), [StdDev.TOTAL])
     numpy.testing.assert_array_equal(mean_0, mean_15)
     numpy.testing.assert_array_equal(stds_0, stds_15)
開發者ID:digitalsatori,項目名稱:oq-engine,代碼行數:22,代碼來源:cauzzi_faccioli_2008_test.py

示例12: get_response_spectrum

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
 def get_response_spectrum(self, magnitude, distance, periods, rake=90, vs30=800, damping=0.05):
     """
     """
     responses = np.zeros((len(periods),))
     p_damping = damping * 100
     rup = RuptureContext()
     rup.mag = magnitude
     rup.rake = rake
     dists = DistancesContext()
     dists.rjb = np.array([distance])
     sites = SitesContext()
     sites.vs30 = np.array([vs30])
     stddev_types = [StdDev.TOTAL]
     for i, period in enumerate(periods):
         if period == 0:
             imt = _PGA()
         else:
             imt = _SA(period, p_damping)
         responses[i] = np.exp(self._gmpe.get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[0][0])
     return ResponseSpectrum(periods, responses, unit='g', damping=damping)
開發者ID:bartvle,項目名稱:Synthacc,代碼行數:22,代碼來源:gmpe.py

示例13: test_equality

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
    def test_equality(self):
        sctx1 = SitesContext()
        sctx1.vs30 = numpy.array([500., 600., 700.])
        sctx1.vs30measured = True
        sctx1.z1pt0 = numpy.array([40., 50., 60.])
        sctx1.z2pt5 = numpy.array([1, 2, 3])

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 == sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 != sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = False
        sctx2.z1pt0 = numpy.array([40., 50., 60.])
        sctx2.z2pt5 = numpy.array([1, 2, 3])

        self.assertTrue(sctx1 != sctx2)

        sctx2 = SitesContext()
        sctx2.vs30 = numpy.array([500., 600., 700.])
        sctx2.vs30measured = True
        sctx2.z1pt0 = numpy.array([40., 50., 60.])

        self.assertTrue(sctx1 != sctx2)

        rctx = RuptureContext()
        rctx.mag = 5.
        self.assertTrue(sctx1 != rctx)
開發者ID:gem,項目名稱:oq-hazardlib,代碼行數:43,代碼來源:base_test.py

示例14: AbrahamsonEtAl2014

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]

## This all works..... ##

ASK14 = AbrahamsonEtAl2014()

IMT = imt.PGA()
rctx = RuptureContext()
dctx = DistancesContext()
sctx = SitesContext()
sctx_rock = SitesContext()

rctx.rake = 0.0
rctx.dip = 90.0
rctx.ztor = 7.13
rctx.mag = 3.0
#rctx.mag = np.linspace(0.1,5.)
rctx.width = 10.0
rctx.hypo_depth = 8.0

#dctx.rrup = np.logspace(1,np.log10(200),100)
dctx.rrup = np.logspace(np.log10(10),np.log10(10.0),1)


# Assuming average ztor, get rjb:
dctx.rjb = np.sqrt(dctx.rrup**2 - rctx.ztor**2)
dctx.rhypo = dctx.rrup
dctx.rx = dctx.rjb
dctx.ry0 = dctx.rx

sctx.vs30 = np.ones_like(dctx.rrup) * 760.0
開發者ID:vSahakian,項目名稱:grmpy,代碼行數:32,代碼來源:test_openquake.py

示例15: signal_end

# 需要導入模塊: from openquake.hazardlib.gsim.base import RuptureContext [as 別名]
# 或者: from openquake.hazardlib.gsim.base.RuptureContext import mag [as 別名]
def signal_end(st, event_time, event_lon, event_lat, event_mag,
               method=None, vmin=None, floor=None,
               model=None, epsilon=2.0):
    """
    Estimate end of signal by using a model of the 5-95% significant
    duration, and adding this value to the "signal_split" time. This probably
    only works well when the split is estimated with a p-wave picker since
    the velocity method often ends up with split times that are well before
    signal actually starts.

    Args:
        st (StationStream):
            Stream of data.
        event_time (UTCDateTime):
            Event origin time.
        event_mag (float):
            Event magnitude.
        event_lon (float):
            Event longitude.
        event_lat (float):
            Event latitude.
        method (str):
            Method for estimating signal end time. Either 'velocity'
            or 'model'.
        vmin (float):
            Velocity (km/s) for estimating end of signal. Only used if
            method="velocity".
        floor (float):
            Minimum duration (sec) applied along with vmin.
        model (str):
            Short name of duration model to use. Must be defined in the
            gmprocess/data/modules.yml file.
        epsilon (float):
            Number of standard deviations; if epsilon is 1.0, then the signal
            window duration is the mean Ds + 1 standard deviation. Only used
            for method="model".

    Returns:
        trace with stats dict updated to include a
        stats['processing_parameters']['signal_end'] dictionary.

    """
    # Load openquake stuff if method="model"
    if method == "model":
        mod_file = pkg_resources.resource_filename(
            'gmprocess', os.path.join('data', 'modules.yml'))
        with open(mod_file, 'r') as f:
            mods = yaml.load(f)

        # Import module
        cname, mpath = mods['modules'][model]
        dmodel = getattr(import_module(mpath), cname)()

        # Set some "conservative" inputs (in that they will tend to give
        # larger durations).
        sctx = SitesContext()
        sctx.vs30 = np.array([180.0])
        sctx.z1pt0 = np.array([0.51])
        rctx = RuptureContext()
        rctx.mag = event_mag
        rctx.rake = -90.0
        dur_imt = imt.from_string('RSD595')
        stddev_types = [const.StdDev.INTRA_EVENT]

    for tr in st:
        if not tr.hasParameter('signal_split'):
            continue
        if method == "velocity":
            if vmin is None:
                raise ValueError('Must specify vmin if method is "velocity".')
            if floor is None:
                raise ValueError('Must specify floor if method is "velocity".')
            epi_dist = gps2dist_azimuth(
                lat1=event_lat,
                lon1=event_lon,
                lat2=tr.stats['coordinates']['latitude'],
                lon2=tr.stats['coordinates']['longitude'])[0] / 1000.0
            end_time = event_time + max(floor, epi_dist / vmin)
        elif method == "model":
            if model is None:
                raise ValueError('Must specify model if method is "model".')
            epi_dist = gps2dist_azimuth(
                lat1=event_lat,
                lon1=event_lon,
                lat2=tr.stats['coordinates']['latitude'],
                lon2=tr.stats['coordinates']['longitude'])[0] / 1000.0
            dctx = DistancesContext()
            # Repi >= Rrup, so substitution here should be conservative
            # (leading to larger durations).
            dctx.rrup = np.array([epi_dist])
            lnmu, lnstd = dmodel.get_mean_and_stddevs(
                sctx, rctx, dctx, dur_imt, stddev_types)
            duration = np.exp(lnmu + epsilon * lnstd[0])
            # Get split time
            split_time = tr.getParameter('signal_split')['split_time']
            end_time = split_time + float(duration)
        else:
            raise ValueError('method must be either "velocity" or "model".')
        # Update trace params
        end_params = {
#.........這裏部分代碼省略.........
開發者ID:mmoschetti-usgs,項目名稱:groundmotion-processing,代碼行數:103,代碼來源:windows.py


注:本文中的openquake.hazardlib.gsim.base.RuptureContext.mag方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。