當前位置: 首頁>>代碼示例>>Python>>正文


Python CaseSet.record方法代碼示例

本文整理匯總了Python中openmdao.lib.casehandlers.api.CaseSet.record方法的典型用法代碼示例。如果您正苦於以下問題:Python CaseSet.record方法的具體用法?Python CaseSet.record怎麽用?Python CaseSet.record使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在openmdao.lib.casehandlers.api.CaseSet的用法示例。


在下文中一共展示了CaseSet.record方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ParetoFilterBase

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
class ParetoFilterBase(Component):
    """
    Base functionality for a pareto filter.
    Not to be instantiated directly. Should be subclassed.
    """

    def _is_dominated(self, y1, y2):
        """Tests to see if the point y1 is dominated by the point y2.
        True if y1 is dominated by y2, False otherwise.
        """
        if y1 == y2:
            return False
        for a, b in zip(y1, y2):
            if a < b:
                return False

        return True

    def execute(self):
        """Finds and removes pareto optimal points in the given case set.
        Returns a list of pareto optimal points. Smaller is better for all
        criteria.
        """
        #convert stuff to caseSets if they are not
        case_sets = []
        for ci in self.case_sets:
            if not isinstance(ci, CaseSet):
                case_sets.append(caseiter_to_caseset(ci))
            else:
                case_sets.append(ci)

        y_list = []
        if len(case_sets) > 1:
            case_set = case_sets[0].union(*case_sets[1:])
        else:
            case_set = case_sets[0]
        criteria_count = len(self.criteria)

        try:
            # need to transpose the list of outputs
            y_list = zip(*[case_set[crit] for crit in self.criteria])
        except KeyError:
            self.raise_exception('no cases provided had all of the outputs '
                 'matching the provided criteria, %s' % self.criteria, ValueError)

        y_temp = list(y_list)

        self.dominated_set = CaseSet()
        self.pareto_set = CaseSet()  # TODO: need a way to copy casesets

        for point1, case in zip(y_list, iter(case_set)):
            dominated = False
            for point2 in y_temp:
                if self._is_dominated(point1, point2):
                    self.dominated_set.record(case)
                    y_temp.remove(point1)
                    dominated = True
                    break
            if not dominated:
                self.pareto_set.record(case)
開發者ID:Daiyu506,項目名稱:OpenMDAO-Framework,代碼行數:62,代碼來源:pareto_filter.py

示例2: test_from_case

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_from_case(self):
     cs = CaseSet(self.case1)
     self.assertEqual(1, len(cs))
     self.assertEqual(cs[0]._inputs, self.case1_dup._inputs)
     self.assertEqual(cs[0]._outputs, self.case1_dup._outputs)
     cs.record(self.case2)
     cs.record(self.case1_dup)
     self.assertEqual(2, len(cs))
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:10,代碼來源:test_caseset.py

示例3: test_copy

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_copy(self):
     cs = CaseSet()
     cs.record(self.case1)
     cs.record(self.case2)
     cs.record(self.case1_dup)
     cscopy = cs.copy()
     for c1, c2 in zip(cs, cscopy):
         self.assertEqual(c1, c2)
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:10,代碼來源:test_caseset.py

示例4: test_iteration

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_iteration(self):
     cs = CaseSet()
     cs.record(self.case1)
     cs.record(self.case2)
     cs.record(self.case1_dup)
     expected = [self.case1, self.case2, self.case1_dup]
     for i,case in enumerate(cs):
         self.assertEqual(case._inputs, expected[i]._inputs)
         self.assertEqual(case._outputs, expected[i]._outputs)
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:11,代碼來源:test_caseset.py

示例5: test_start_empty

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_start_empty(self):
     cs = CaseSet()
     cs.record(self.case1)
     cs.record(self.case2)
     cs.record(self.case1_dup)
     self.assertEqual(2, len(cs))
     self.assertEqual(cs[0]._inputs, self.case1_dup._inputs)
     self.assertEqual(cs[0]._outputs, self.case1_dup._outputs)
     self.assertEqual(cs[1]._inputs, self.case2._inputs)
     self.assertEqual(cs[1]._outputs, self.case2._outputs)
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:12,代碼來源:test_caseset.py

示例6: test_ei_2obj

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_ei_2obj(self):
     ei = MultiObjExpectedImprovement()
     bests = CaseSet()
     list_of_cases = [Case(outputs=[("y1", 1), ("y2", 10)]), Case(outputs=[("y1", 1), ("y2", -10)])]
     for case in list_of_cases:
         bests.record(case)
     ei.best_cases = bests
     ei.criteria = ["y1", "y2"]
     ei.predicted_values = [NormalDistribution(mu=1, sigma=1), NormalDistribution(mu=0, sigma=1)]
     ei.calc_switch = "EI"
     ei.execute()
     self.assertAlmostEqual([5.0], ei.EI, 1)
     self.assertEqual(0.5, ei.PI, 6)
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:15,代碼來源:test_expected_improvement_multiobj.py

示例7: test_ei_nobj

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_ei_nobj(self):
     ei = MultiObjExpectedImprovement(3)
     bests = CaseSet()
     list_of_cases = [Case(outputs=[("y1",1),("y2",1),("y3",1)])]
     for case in list_of_cases:
         bests.record(case)
     ei.best_cases = bests
     ei.criteria = ['y1','y2','y3']
     ei.predicted_values = [NormalDistribution(mu=1,sigma=1),
                            NormalDistribution(mu=1,sigma=1),
                            NormalDistribution(mu=1,sigma=1)]
     ei.execute()
     self.assertAlmostEqual(0.875,ei.PI,1)
開發者ID:Kenneth-T-Moore,項目名稱:OpenMDAO-Framework,代碼行數:15,代碼來源:test_expected_improvement_multiobj.py

示例8: test_update_empty

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_update_empty(self):
     c1 = Case(inputs=[('x',10),], outputs=[('y',10)])
     c2 = Case(inputs=[('x',1),], outputs=[('y',1)])
     
     cs1 = CaseSet()
     cs1.record(c1)
     cs1.record(c2)
     
     cs2 = CaseSet()
     cs2.update(cs1)
     
     for c1,c2 in zip(cs1, cs2):
         self.assertEqual(c1, c2)
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:15,代碼來源:test_caseset.py

示例9: test_start_empty_subset

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_start_empty_subset(self):
     names=['comp1.a','comp2.c+comp2.d','comp1.b']
     ins = [names[0], names[2]]
     outs = [names[1]]
     cs = CaseSet(names=names)
     cs.record(self.case1)
     cs.record(self.case2)
     cs.record(self.case1_dup)
     self.assertEqual(2, len(cs))
     self.assertEqual(3, len(cs[0].items()))
     self.assertEqual(2, len(cs[0].items('in')))
     self.assertEqual(1, len(cs[0].items('out')))
     self.assertEqual(set(names), set(cs[0].keys()))
     self.assertEqual(set(ins), set(cs[0].keys('in')))
     self.assertEqual(set(outs), set(cs[0].keys('out')))
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:17,代碼來源:test_caseset.py

示例10: test_bad_criteria

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_bad_criteria(self):
     ei = MultiObjExpectedImprovement(2)
     bests = CaseSet()
     list_of_cases = [Case(outputs=[("y1",1),("y2",1)])]
     for case in list_of_cases:
         bests.record(case)
     ei.best_cases = bests
     ei.criteria = ['y1','y3']
     ei.predicted_values = [NormalDistribution(mu=1,sigma=1),
                                                 NormalDistribution(mu=1,sigma=1)]
     try:
         ei.execute()
     except ValueError,err:
         self.assertEqual(str(err),": no cases in the provided case_set"
                             " had output matching the provided criteria, ['y1' 'y3']")
開發者ID:Kenneth-T-Moore,項目名稱:OpenMDAO-Framework,代碼行數:17,代碼來源:test_expected_improvement_multiobj.py

示例11: test_start_empty_subset

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_start_empty_subset(self):
     names = ["comp1.a", "comp2.c+comp2.d", "comp1.b"]
     ins = [names[0], names[2]]
     outs = [names[1]]
     cs = CaseSet(names=names)
     cs.record(self.case1)
     cs.record(self.case2)
     cs.record(self.case1_dup)
     self.assertEqual(2, len(cs))
     self.assertEqual(3, len(cs[0].items()))
     self.assertEqual(2, len(cs[0].items("in")))
     self.assertEqual(1, len(cs[0].items("out")))
     self.assertEqual(set(names), set(cs[0].keys()))
     self.assertEqual(set(ins), set(cs[0].keys("in")))
     self.assertEqual(set(outs), set(cs[0].keys("out")))
開發者ID:hitej,項目名稱:meta-core,代碼行數:17,代碼來源:test_caseset.py

示例12: test_ei_calc_switch

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_ei_calc_switch(self):
     ei = MultiObjExpectedImprovement(3)
     bests = CaseSet()
     list_of_cases = [Case(outputs=[("y1",1),("y2",1),("y3",1)])]
     for case in list_of_cases:
         bests.record(case)
     ei.best_cases = bests
     ei.criteria = ['y1','y2','y3']
     ei.predicted_values = [NormalDistribution(mu=1,sigma=1),
                            NormalDistribution(mu=1,sigma=1),
                            NormalDistribution(mu=1,sigma=1)]
     ei.calc_switch = 'EI'
     try:
         ei.execute()
     except ValueError,err:
         self.assertEqual(str(err),': EI calculations not supported'
                                         ' for more than 2 objectives')
開發者ID:Kenneth-T-Moore,項目名稱:OpenMDAO-Framework,代碼行數:19,代碼來源:test_expected_improvement_multiobj.py

示例13: test_reset_y_star_event

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_reset_y_star_event(self):
     ei = MultiObjExpectedImprovement(3)
     bests = CaseSet()
     list_of_cases = [Case(outputs=[("y1",1),("y2",1),("y3",1)])]
     for case in list_of_cases:
         bests.record(case)
     ei.best_cases = bests
     ei.criteria = ['y1','y2','y3']
     ei.predicted_values = [NormalDistribution(mu=1,sigma=1),
                                                 NormalDistribution(mu=1,sigma=1),
                                                 NormalDistribution(mu=1,sigma=1)]
     ei.execute()
     bests = CaseSet()
     list_of_cases = [Case(outputs=[("y1",2),("y2",2),("y3",2)])]
     for case in list_of_cases:
         bests.record(case)
     ei.best_cases = bests        
     ei.reset_y_star = True
     ei.execute()
     self.assertEqual(ei.y_star.all(),array([2,2,2]).all())
開發者ID:Kenneth-T-Moore,項目名稱:OpenMDAO-Framework,代碼行數:22,代碼來源:test_expected_improvement_multiobj.py

示例14: test_set_ops

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
 def test_set_ops(self):
     cs = CaseSet()
     cs2 = CaseSet()
     for case in self.caselist:
         cs.record(case)
         cs2.record(case)
     self.assertEqual(len(cs), len(self.caselist)-2)
     self.assertTrue(cs == cs2)
     case = cs2.pop(1)
     self.assertFalse(cs == cs2)
     self.assertTrue(cs2 < cs)
     self.assertFalse(cs < cs)
     self.assertTrue(cs <= cs)
     self.assertTrue(cs >= cs)
     self.assertFalse(cs2 > cs)
     self.assertFalse(cs2 > cs2)
     self.assertTrue(case in cs)
     self.assertFalse(case in cs2)
     self.assertTrue(case not in cs2)
     self.assertFalse(case not in cs)
     diffset = cs - cs2
     self.assertEqual(len(diffset), 1)
     self.assertTrue(case in diffset)
     
     cs3 = CaseSet()
     cs4 = CaseSet()
     cs3.record(self.case1)
     cs3.record(self.case2)
     try:
         self.assertTrue(cs3.isdisjoint(cs4))
     except ValueError, err:
         self.assertEqual(str(err), "case containers have different sets of variables")
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:34,代碼來源:test_caseset.py

示例15: ParetoFilter

# 需要導入模塊: from openmdao.lib.casehandlers.api import CaseSet [as 別名]
# 或者: from openmdao.lib.casehandlers.api.CaseSet import record [as 別名]
    
    from matplotlib import pyplot as py
    from mpl_toolkits.mplot3d import Axes3D
    from numpy import random
    random.seed(10)
    
    from openmdao.main.case import Case
    pf = ParetoFilter()
    
    # 2D PARETO FILTERING EXAMPLE
    n = 1000
    x = random.uniform(-1, 0, n)
    y = -(1-x**2)**0.5*random.random(n)
    cases = CaseSet()
    for x_0, y_0 in zip(x, y):
        cases.record(Case(inputs=[("x", x_0), ("y", y_0)]))

    pf.case_sets = [cases]
    pf.criteria = ['x', 'y']
    pf.execute()
    
    x_p, y_p = pf.pareto_set['x'],pf.pareto_set['y']
    x_dom, y_dom = pf.dominated_set['x'],pf.dominated_set['y']
    
    py.figure()
    py.scatter(x, y, s=5)
    py.scatter(x_dom, y_dom, c='', edgecolor='b', s=80)
    py.scatter(x_p, y_p, c='', edgecolors='r', s=80)
    
    #3D PARETO FILTERING EXAMPLE
    n = 1000
開發者ID:JustinSGray,項目名稱:OpenMDAO-Framework,代碼行數:33,代碼來源:pareto_filter.py


注:本文中的openmdao.lib.casehandlers.api.CaseSet.record方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。