當前位置: 首頁>>代碼示例>>Python>>正文


Python NearestNeighbor.train方法代碼示例

本文整理匯總了Python中openmdao.api.NearestNeighbor.train方法的典型用法代碼示例。如果您正苦於以下問題:Python NearestNeighbor.train方法的具體用法?Python NearestNeighbor.train怎麽用?Python NearestNeighbor.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在openmdao.api.NearestNeighbor的用法示例。


在下文中一共展示了NearestNeighbor.train方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: TestWeightedInterpolator1D

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestWeightedInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='weighted')
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [1.], [1.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_insufficient_points(self):
        with self.assertRaises(ValueError) as cm:
            self.surrogate.predict(self.x[0], num_neighbors=100)

        expected_msg = ('WeightedInterpolant does not have sufficient '
            'training data to use num_neighbors=100, only 4 points available.')

        self.assertEqual(str(cm.exception), expected_msg)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0, num_neighbors=3)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.52631579], [0.94736842], [0.52631579]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0, num_neighbors=3)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.52631579], [0.94736842], [0.52631579]])

        mu = self.surrogate.predict(test_x, num_neighbors=3)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_deriv = np.array([[1.92797784], [0.06648199], [-1.92797784]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0, num_neighbors=3)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x, num_neighbors=3)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x, num_neighbors=3)

        assert_rel_error(self, mu, np.array([[1.92797784]]), 1e-6)
開發者ID:OpenMDAO,項目名稱:OpenMDAO,代碼行數:58,代碼來源:test_nearest_neighbor.py

示例2: TestRBFInterpolator1D

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestRBFInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', num_neighbors=4)
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [2.], [2.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            raise unittest.SkipTest("This test doesn't work in numpy 1.14.")

        test_x = np.array([[0.5], [2.5], [1.0]])
        expected_deriv = np.array([[2.34609214],  [-2.34609214], [1.5121989]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_rel_error(self, jac, [y0], 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_rel_error(self, mu, np.array([[2.34609214]]), 1e-6)
開發者ID:OpenMDAO,項目名稱:OpenMDAO,代碼行數:53,代碼來源:test_nearest_neighbor.py

示例3: TestRBFInterpolator1D

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestRBFInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', n=4)
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [2.], [2.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-8)

    def test_bulk_prediction(self):

        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.82893803], [1.72485853], [0.82893803]])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-8)

    def test_jacobian(self):
        test_x = np.array([[0.5], [2.5]])
        expected_deriv = np.array([[2.34609214],  [-2.34609214]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.jacobian(x0)
            assert_rel_error(self, jac, y0, 1e-6)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.jacobian(test_x)

        assert_rel_error(self, mu, np.array([[2.34609214]]), 1e-6)
開發者ID:Heathckliff,項目名稱:OpenMDAO,代碼行數:49,代碼來源:test_nearest_neighbor.py

示例4: TestLinearInterpolator1D

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestLinearInterpolator1D(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='linear')
        self.x = np.array([[0.], [1.], [2.], [3.]])
        self.y = np.array([[0.], [1.], [1.], [0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.5], [1.], [0.5]])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_bulk_prediction(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_y = np.array([[0.5], [1.], [0.5]])
        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-9)

    def test_jacobian(self):
        test_x = np.array([[0.5], [1.5], [2.5]])
        expected_deriv = np.array([[1.], [0.], [-1.]])

        for x0, y0 in zip(test_x, expected_deriv):
            jac = self.surrogate.linearize(x0)
            assert_rel_error(self, jac, [y0], 1e-9)

    def test_pt_cache(self):
        test_x = np.array([[0.5]])

        self.surrogate.predict(test_x)

        # Mess with internals to ensure cache is being used.
        self.surrogate.interpolant._KData = None

        mu = self.surrogate.linearize(test_x)

        assert_rel_error(self, mu, np.array([[1.]]), 1e-6)
開發者ID:OpenMDAO,項目名稱:OpenMDAO,代碼行數:47,代碼來源:test_nearest_neighbor.py

示例5: TestLinearInterpolatorND

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestLinearInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='linear')
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        expected_y = np.array([[0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [1., 0., 0.5, 1.],
                               [0.5, 0.5, 0.5, 0.5]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        expected_y = np.array([[0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [0.5, 0.5, 0.5, 0.5],
                               [1., 0., 0.5, 1.],
                               [0.5, 0.5, 0.5, 0.5]
                               ])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-9)

    def test_jacobian(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.],
                           [1., 1.5],
                           [1.5, 1.]
                           ])
        expected_deriv = np.array([
            [[0., -1.], [0., 1.], [0., 0.], [0., -1.]],
            [[-1., 0.], [1., 0.], [0., 0.], [-1., 0.]],
            [[0., 1.], [0., -1.], [0., 0.], [0., 1.]],
            [[1., 0.], [-1., 0.], [0., 0.], [1., 0.]]
            ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-9)
開發者ID:OpenMDAO,項目名稱:OpenMDAO,代碼行數:73,代碼來源:test_nearest_neighbor.py

示例6: TestRBFInterpolatorND

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestRBFInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', num_neighbors=5)
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])

        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        from distutils.version import LooseVersion
        if LooseVersion(np.__version__) >= LooseVersion("1.14"):
            raise unittest.SkipTest("This test doesn't work in numpy 1.14.")

        test_x = np.array([[0.5, 0.5],
                           [0.5, 1.5],
                           [1.5, 1.5],
                           [1.5, 0.5]
                           ])
        a = -0.97153433
        b = -0.97153433
        c = 0.59055939
        d = 0.59055939

        expected_deriv = np.array([
            [[a, b], [c, d], [0., 0.], [a, b]],
            [[a, -b], [c, -d], [0., 0.], [a, -b]],
            [[-a, -b], [-c, -d], [0., 0.], [-a, -b]],
            [[-a, b], [-c, d], [0., 0.], [-a, b]]
        ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-6)
開發者ID:OpenMDAO,項目名稱:OpenMDAO,代碼行數:93,代碼來源:test_nearest_neighbor.py

示例7: TestWeightedInterpolatorND

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestWeightedInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='weighted')
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, [y0], 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        a = ((16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.))) /
             (16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)) + 8.))

        b = 8. / (8. + 16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)))
        c = (2. + 2. / (5. * np.sqrt(5))) / (3. + 2. / (5. * np.sqrt(5)))
        d = 1. / (3. + 2. / (5. * np.sqrt(5)))

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.54872067, 0.45127933, 0.5, 0.54872067]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0, num_neighbors=5, dist_eff=3)
            assert_rel_error(self, mu, [y0], 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])

        a = ((16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.))) /
             (16./(5*np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)) + 8.))
        b = 8. / (8. + 16. / (5 * np.sqrt(5.)) + 16. / (13. * np.sqrt(13.)))
        c = (2. + 2./(5.*np.sqrt(5))) / (3. + 2. / (5. * np.sqrt(5)))
        d = 1. / (3. + 2. / (5. * np.sqrt(5)))

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.54872067, 0.45127933, 0.5, 0.54872067]
                               ])

        mu = self.surrogate.predict(test_x, num_neighbors=5, dist_eff=3)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.],
                           [1., 1.5],
                           [1.5, 1.]
                           ])
        a = 0.99511746
        expected_deriv = np.array([
            [[0., -a], [0., a], [0., 0.], [0., -a]],
            [[-a, 0], [a, 0.], [0., 0.], [-a, 0]],
            [[0., a], [0., -a], [0., 0.], [0., a]],
            [[a, 0.], [-a, 0.], [0., 0.], [a, 0.]]
        ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.linearize(x0)
            assert_rel_error(self, mu, y0, 1e-6)
開發者ID:OpenMDAO,項目名稱:OpenMDAO,代碼行數:88,代碼來源:test_nearest_neighbor.py

示例8: TestRBFInterpolatorND

# 需要導入模塊: from openmdao.api import NearestNeighbor [as 別名]
# 或者: from openmdao.api.NearestNeighbor import train [as 別名]
class TestRBFInterpolatorND(unittest.TestCase):
    def setUp(self):
        self.surrogate = NearestNeighbor(interpolant_type='rbf', n=5)
        self.x = np.array([[0., 0.], [2., 0.], [2., 2.], [0., 2.], [1., 1.]])
        self.y = np.array([[1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [1., 0., .5, 1.],
                           [0., 1., .5, 0.]])
        self.surrogate.train(self.x, self.y)

    def test_training(self):
        for x0, y0 in zip(self.x, self.y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-9)

    def test_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])
        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        for x0, y0 in zip(test_x, expected_y):
            mu = self.surrogate.predict(x0)
            assert_rel_error(self, mu, y0, 1e-6)

    def test_bulk_prediction(self):
        test_x = np.array([[1., 0.5],
                           [0.5, 1.0],
                           [1.0, 1.5],
                           [1.5, 1.],
                           [0., 1.],
                           [.5, .5]
                           ])

        a = 0.05453616
        b = 0.5013363
        c = 0.33860606
        d = 0.13507662

        expected_y = np.array([[a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [a, b, 0.5, a],
                               [c, d, 0.5, c],
                               [0.37840446, 0.336283, 0.5, 0.37840446]
                               ])

        mu = self.surrogate.predict(test_x)
        assert_rel_error(self, mu, expected_y, 1e-6)

    def test_jacobian(self):
        test_x = np.array([[0.5, 0.5],
                           [0.5, 1.5],
                           [1.5, 1.5],
                           [1.5, 0.5]
                           ])
        a = -0.97153433
        b = -0.97153433
        c = 0.59055939
        d = 0.59055939

        expected_deriv = np.array([
            [[a, b], [c, d], [0., 0.], [a, b]],
            [[a, -b], [c, -d], [0., 0.], [a, -b]],
            [[-a, -b], [-c, -d], [0., 0.], [-a, -b]],
            [[-a, b], [-c, d], [0., 0.], [-a, b]]
        ])

        for x0, y0 in zip(test_x, expected_deriv):
            mu = self.surrogate.jacobian(x0)
            assert_rel_error(self, mu, y0, 1e-6)
開發者ID:Heathckliff,項目名稱:OpenMDAO,代碼行數:89,代碼來源:test_nearest_neighbor.py


注:本文中的openmdao.api.NearestNeighbor.train方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。