當前位置: 首頁>>代碼示例>>Python>>正文


Python Evaluation.run方法代碼示例

本文整理匯總了Python中ocw.evaluation.Evaluation.run方法的典型用法代碼示例。如果您正苦於以下問題:Python Evaluation.run方法的具體用法?Python Evaluation.run怎麽用?Python Evaluation.run使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ocw.evaluation.Evaluation的用法示例。


在下文中一共展示了Evaluation.run方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_subregion_unary_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_subregion_unary_result_shape(self):
        bound = Bounds(
                10, 18, 
                100, 108, 
                dt.datetime(2000, 1, 1), dt.datetime(2000, 3, 1))

        new_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset],
            [TemporalStdDev()],
            [bound]
        )
        new_eval.run()

        # Expected result shape is
        # [
        #   [   
        #       [   # Subregions cause this extra layer
        #           temporalstddev.run(reference),
        #           temporalstddev.run(target1),
        #           temporalstddev.run(target2)
        #       ]
        #   ]
        # ]
        self.assertTrue(len(new_eval.unary_results) == 1)
        self.assertTrue(type(new_eval.unary_results) == type([]))

        self.assertTrue(len(new_eval.unary_results[0]) == 1)

        self.assertTrue(len(new_eval.unary_results[0][0]) == 3)
開發者ID:d-vf,項目名稱:climate,代碼行數:32,代碼來源:test_evaluation.py

示例2: Taylor_diagram_spatial_pattern_of_multiyear_climatology

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
def Taylor_diagram_spatial_pattern_of_multiyear_climatology(
        obs_dataset, obs_name, model_datasets, model_names, file_name):

    # calculate climatological mean fields
    obs_clim_dataset = ds.Dataset(obs_dataset.lats, obs_dataset.lons,
                                  obs_dataset.times,
                                  utils.calc_temporal_mean(obs_dataset))
    model_clim_datasets = []
    for dataset in model_datasets:
        model_clim_datasets.append(
            ds.Dataset(dataset.lats, dataset.lons, dataset.times,
                       utils.calc_temporal_mean(dataset)))

    # Metrics (spatial standard deviation and pattern correlation)
    # determine the metrics
    taylor_diagram = metrics.SpatialPatternTaylorDiagram()

    # create the Evaluation object
    taylor_evaluation = Evaluation(
        obs_clim_dataset,  # Climatological mean of reference dataset for the evaluation
        model_clim_datasets,  # list of climatological means from model datasets for the evaluation
        [taylor_diagram])

    # run the evaluation (bias calculation)
    taylor_evaluation.run()

    taylor_data = taylor_evaluation.results[0]

    plotter.draw_taylor_diagram(
        taylor_data,
        model_names,
        obs_name,
        file_name,
        pos='upper right',
        frameon=False)
開發者ID:CWSL,項目名稱:climate,代碼行數:37,代碼來源:metrics_and_plots.py

示例3: test_subregion_unary_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_subregion_unary_result_shape(self):
        bound = Bounds(
            lat_min=10, lat_max=18,
            lon_min=100, lon_max=108,
            start=dt.datetime(2000, 1, 1), end=dt.datetime(2000, 3, 1))

        new_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset],
            [TemporalStdDev(), TemporalStdDev()],
            [bound, bound, bound, bound, bound]
        )
        new_eval.run()

        # Expected result shape is
        # [
        #       [   # Subregions cause this extra layer
        #           [3, temporalstddev.run(reference).shape],
        #       ]
        # ]

        # 5 = number of subregions
        self.assertTrue(len(new_eval.unary_results) == 5)
        # number of metrics
        self.assertTrue(len(new_eval.unary_results[0]) == 2)
        self.assertTrue(isinstance(new_eval.unary_results, type([])))
        # number of datasets (ref + target)
        self.assertTrue(new_eval.unary_results[0][0].shape[0] == 3)
開發者ID:MichaelArthurAnderson,項目名稱:climate,代碼行數:30,代碼來源:test_evaluation.py

示例4: test_bias_output_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
 def test_bias_output_shape(self):
     bias_eval = Evaluation(self.test_dataset, [
                            self.another_test_dataset], [Bias()])
     bias_eval.run()
     input_shape = tuple(self.test_dataset.values.shape)
     bias_results_shape = tuple(bias_eval.results[0][0].shape)
     self.assertEqual(input_shape, bias_results_shape)
開發者ID:MichaelArthurAnderson,項目名稱:climate,代碼行數:9,代碼來源:test_evaluation.py

示例5: Map_plot_bias_of_multiyear_climatology

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
def Map_plot_bias_of_multiyear_climatology(obs_dataset, obs_name, model_datasets, model_names,
                                      file_name, row, column):
    '''Draw maps of observed multi-year climatology and biases of models"'''

    # calculate climatology of observation data
    obs_clim = utils.calc_temporal_mean(obs_dataset)
    # determine the metrics
    map_of_bias = metrics.TemporalMeanBias()

    # create the Evaluation object
    bias_evaluation = Evaluation(obs_dataset, # Reference dataset for the evaluation
                                 model_datasets, # list of target datasets for the evaluation
                                 [map_of_bias, map_of_bias])

    # run the evaluation (bias calculation)
    bias_evaluation.run() 

    rcm_bias = bias_evaluation.results[0]

    fig = plt.figure()

    lat_min = obs_dataset.lats.min()
    lat_max = obs_dataset.lats.max()
    lon_min = obs_dataset.lons.min()
    lon_max = obs_dataset.lons.max()

    string_list = list(string.ascii_lowercase) 
    ax = fig.add_subplot(row,column,1)
    m = Basemap(ax=ax, projection ='cyl', llcrnrlat = lat_min, urcrnrlat = lat_max,
            llcrnrlon = lon_min, urcrnrlon = lon_max, resolution = 'l', fix_aspect=False)
    lons, lats = np.meshgrid(obs_dataset.lons, obs_dataset.lats)

    x,y = m(lons, lats)

    m.drawcoastlines(linewidth=1)
    m.drawcountries(linewidth=1)
    m.drawstates(linewidth=0.5, color='w')
    max = m.contourf(x,y,obs_clim,levels = plotter._nice_intervals(obs_dataset.values, 10), extend='both',cmap='PuOr')
    ax.annotate('(a) \n' + obs_name,xy=(lon_min, lat_min))
    cax = fig.add_axes([0.02, 1.-float(1./row), 0.01, 1./row*0.6])
    plt.colorbar(max, cax = cax) 
    clevs = plotter._nice_intervals(rcm_bias, 11)
    for imodel in np.arange(len(model_datasets)):
        ax = fig.add_subplot(row, column,2+imodel)
        m = Basemap(ax=ax, projection ='cyl', llcrnrlat = lat_min, urcrnrlat = lat_max,
                llcrnrlon = lon_min, urcrnrlon = lon_max, resolution = 'l', fix_aspect=False)
        m.drawcoastlines(linewidth=1)
        m.drawcountries(linewidth=1)
        m.drawstates(linewidth=0.5, color='w')
        max = m.contourf(x,y,rcm_bias[imodel,:],levels = clevs, extend='both', cmap='RdBu_r')
        ax.annotate('('+string_list[imodel+1]+')  \n '+model_names[imodel],xy=(lon_min, lat_min))

    cax = fig.add_axes([0.91, 0.1, 0.015, 0.8])
    plt.colorbar(max, cax = cax) 

    plt.subplots_adjust(hspace=0.01,wspace=0.05)

    plt.show()
    fig.savefig(file_name,dpi=600,bbox_inches='tight')
開發者ID:pwcberry,項目名稱:climate,代碼行數:61,代碼來源:metrics_and_plots.py

示例6: test_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_result_shape(self):
        bias_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset, self.another_test_dataset],
            [Bias(), Bias()]
        )
        bias_eval.run()

        # Expected result shape is
        # [bias, bias] where bias.shape[0] = number of datasets
        self.assertTrue(len(bias_eval.results) == 2)
        self.assertTrue(bias_eval.results[0].shape[0] == 3)
開發者ID:CWSL,項目名稱:climate,代碼行數:14,代碼來源:test_evaluation.py

示例7: test_unary_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_unary_result_shape(self):
        new_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset, self.another_test_dataset, self.another_test_dataset],
            [TemporalStdDev()]
        )
        new_eval.run()

        # Expected result shape is
        # [stddev] where stddev.shape[0] = number of datasets
        
        self.assertTrue(len(new_eval.unary_results) == 1)
        self.assertTrue(new_eval.unary_results[0].shape[0] == 5)
開發者ID:CWSL,項目名稱:climate,代碼行數:15,代碼來源:test_evaluation.py

示例8: test_unary_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_unary_result_shape(self):
        new_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset],
            [TemporalStdDev()]
        )
        new_eval.run()

        # Expected result shape is
        # [
        #   temporalstddev.run(reference),
        #   temporalstddev.run(target1),
        #   temporalstddev.run(target2)
        # ]
        self.assertTrue(len(new_eval.unary_results) == 1)
        self.assertTrue(len(new_eval.unary_results[0]) == 3)
開發者ID:d-vf,項目名稱:climate,代碼行數:18,代碼來源:test_evaluation.py

示例9: test_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_result_shape(self):
        bias_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset],
            [Bias()]
        )
        bias_eval.run()

        # Expected result shape is
        # [
        #   [
        #       bias.run(reference, target1)
        #   ],
        #   [
        #       bias.run(reference, target2)
        #   ]
        # ]
        self.assertTrue(len(bias_eval.results) == 2)
        self.assertTrue(len(bias_eval.results[0]) == 1)
        self.assertTrue(len(bias_eval.results[1]) == 1)
開發者ID:d-vf,項目名稱:climate,代碼行數:22,代碼來源:test_evaluation.py

示例10: Taylor_diagram_spatial_pattern_of_multiyear_climatology

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
def Taylor_diagram_spatial_pattern_of_multiyear_climatology(obs_dataset, obs_name, model_datasets, model_names,
                                      file_name):

    # calculate climatological mean fields
    obs_dataset.values = utils.calc_temporal_mean(obs_dataset)
    for dataset in model_datasets:
        dataset.values = utils.calc_temporal_mean(dataset)

    # Metrics (spatial standard deviation and pattern correlation)
    # determine the metrics
    taylor_diagram = metrics.SpatialPatternTaylorDiagram()

    # create the Evaluation object
    taylor_evaluation = Evaluation(obs_dataset, # Reference dataset for the evaluation
                                 model_datasets, # list of target datasets for the evaluation
                                 [taylor_diagram])

    # run the evaluation (bias calculation)
    taylor_evaluation.run() 

    taylor_data = taylor_evaluation.results[0]

    plotter.draw_taylor_diagram(taylor_data, model_names, obs_name, file_name, pos='upper right',frameon=False)
開發者ID:pwcberry,項目名稱:climate,代碼行數:25,代碼來源:metrics_and_plots.py

示例11: test_subregion_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_subregion_result_shape(self):
        bound = Bounds(
            lat_min=10, lat_max=18,
            lon_min=100, lon_max=108,
            start=dt.datetime(2000, 1, 1), end=dt.datetime(2000, 3, 1))

        bias_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset],
            [Bias()],
            [bound]
        )
        bias_eval.run()

        # Expected result shape is
        # [
        #       [   # Subregions cause this extra layer
        #           [number of targets, bias.run(reference, target1).shape]
        #       ]
        #   ],
        self.assertTrue(len(bias_eval.results) == 1)
        self.assertTrue(len(bias_eval.results[0]) == 1)
        self.assertTrue(bias_eval.results[0][0].shape[0] == 2)
        self.assertTrue(isinstance(bias_eval.results, type([])))
開發者ID:MichaelArthurAnderson,項目名稱:climate,代碼行數:26,代碼來源:test_evaluation.py

示例12: test_subregion_result_shape

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
    def test_subregion_result_shape(self):
        bound = Bounds(
                10, 18, 
                100, 108, 
                dt.datetime(2000, 1, 1), dt.datetime(2000, 3, 1))

        bias_eval = Evaluation(
            self.test_dataset,
            [self.another_test_dataset, self.another_test_dataset],
            [Bias()],
            [bound]
        )
        bias_eval.run()

        # Expected result shape is
        # [
        #   [
        #       [   # Subregions cause this extra layer
        #           bias.run(reference, target1)
        #       ]
        #   ],
        #   [
        #       [
        #           bias.run(reference, target2)
        #       ]
        #   ]
        # ]
        self.assertTrue(len(bias_eval.results) == 2)

        self.assertTrue(len(bias_eval.results[0]) == 1)
        self.assertTrue(type(bias_eval.results[0]) == type([]))
        self.assertTrue(len(bias_eval.results[1]) == 1)
        self.assertTrue(type(bias_eval.results[1]) == type([]))

        self.assertTrue(len(bias_eval.results[0][0]) == 1)
        self.assertTrue(len(bias_eval.results[1][0]) == 1)
開發者ID:d-vf,項目名稱:climate,代碼行數:38,代碼來源:test_evaluation.py

示例13: run_evaluation

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
def run_evaluation():
    ''' Run an OCW Evaluation.

    *run_evaluation* expects the Evaluation parameters to be POSTed in
    the following format.

    .. sourcecode:: javascript

        {
            reference_dataset: {
                // Id that tells us how we need to load this dataset.
                'data_source_id': 1 == local, 2 == rcmed,

                // Dict of data_source specific identifying information.
                //
                // if data_source_id == 1 == local:
                // {
                //     'id': The path to the local file on the server for loading.
                //     'var_name': The variable data to pull from the file.
                //     'lat_name': The latitude variable name.
                //     'lon_name': The longitude variable name.
                //     'time_name': The time variable name
                //     'name': Optional dataset name
                // }
                //
                // if data_source_id == 2 == rcmed:
                // {
                //     'dataset_id': The dataset id to grab from RCMED.
                //     'parameter_id': The variable id value used by RCMED.
                //     'name': Optional dataset name
                // }
                'dataset_info': {..}
            },

            // The list of target datasets to use in the Evaluation. The data
            // format for the dataset objects should be the same as the
            // reference_dataset above.
            'target_datasets': [{...}, {...}, ...],

            // All the datasets are re-binned to the reference dataset
            // before being added to an experiment. This step (in degrees)
            // is used when re-binning both the reference and target datasets.
            'spatial_rebin_lat_step': The lat degree step. Integer > 0,

            // Same as above, but for lon
            'spatial_rebin_lon_step': The lon degree step. Integer > 0,

            // The temporal resolution to use when doing a temporal re-bin
            // This is a timedelta of days to use so daily == 1, monthly is
            // (1, 31], annual/yearly is (31, 366], and full is anything > 366.
            'temporal_resolution': Integer in range(1, 999),

            // A list of the metric class names to use in the evaluation. The
            // names must match the class name exactly.
            'metrics': [Bias, TemporalStdDev, ...]

            // The bounding values used in the Evaluation. Note that lat values
            // should range from -180 to 180 and lon values from -90 to 90.
            'start_time': start time value in the format '%Y-%m-%d %H:%M:%S',
            'end_time': end time value in the format '%Y-%m-%d %H:%M:%S',
            'lat_min': The minimum latitude value,
            'lat_max': The maximum latitude value,
            'lon_min': The minimum longitude value,
            'lon_max': The maximum longitude value,

            // NOTE: At the moment, subregion support is fairly minimal. This
            // will be addressed in the future. Ideally, the user should be able
            // to load a file that they have locally. That would change the
            // format that this data is passed.
            'subregion_information': Path to a subregion file on the server.
        }
    '''
    # TODO: validate input parameters and return an error if not valid

    eval_time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
    data = request.json

    eval_bounds = {
        'start_time': datetime.strptime(data['start_time'], '%Y-%m-%d %H:%M:%S'),
        'end_time': datetime.strptime(data['end_time'], '%Y-%m-%d %H:%M:%S'),
        'lat_min': float(data['lat_min']),
        'lat_max': float(data['lat_max']),
        'lon_min': float(data['lon_min']),
        'lon_max': float(data['lon_max'])
    }

    # Load all the datasets
    ref_dataset = _process_dataset_object(data['reference_dataset'], eval_bounds)

    target_datasets = [_process_dataset_object(obj, eval_bounds)
					   for obj
					   in data['target_datasets']]

    # Normalize the dataset time values so they break on consistent days of the
    # month or time of the day, depending on how they will be rebinned.
    resolution = data['temporal_resolution']
    time_delta = timedelta(days=resolution)

    time_step = 'daily' if resolution == 1 else 'monthly'
    ref_dataset = dsp.normalize_dataset_datetimes(ref_dataset, time_step)
#.........這裏部分代碼省略.........
開發者ID:darth-pr,項目名稱:climate,代碼行數:103,代碼來源:processing.py

示例14: TestEvaluation

# 需要導入模塊: from ocw.evaluation import Evaluation [as 別名]
# 或者: from ocw.evaluation.Evaluation import run [as 別名]
class TestEvaluation(unittest.TestCase):

    def setUp(self):
        self.eval = Evaluation(None, [], [])

        lat = np.array([10, 12, 14, 16, 18])
        lon = np.array([100, 102, 104, 106, 108])
        time = np.array([dt.datetime(2000, x, 1) for x in range(1, 13)])
        flat_array = np.array(range(300))
        value = flat_array.reshape(12, 5, 5)
        self.variable = 'prec'
        self.other_var = 'temp'
        self.test_dataset = Dataset(lat, lon, time, value, self.variable)
        self.another_test_dataset = Dataset(lat, lon, time, value,
                                            self.other_var)

    def test_init(self):
        self.assertEquals(self.eval.ref_dataset, None)
        self.assertEquals(self.eval.target_datasets, [])
        self.assertEquals(self.eval.metrics, [])
        self.assertEquals(self.eval.unary_metrics, [])

    def test_full_init(self):
        self.eval = Evaluation(
            self.test_dataset,
            [self.test_dataset, self.another_test_dataset],
            [Bias(), Bias(), TemporalStdDev()])
        ref_dataset = self.test_dataset
        target_datasets = [self.test_dataset, self.another_test_dataset]
        metrics = [Bias(), Bias()]
        unary_metrics = [TemporalStdDev()]

        self.eval = Evaluation(ref_dataset,
                               target_datasets,
                               metrics + unary_metrics)

        self.assertEqual(self.eval.ref_dataset.variable, self.variable)

        # Make sure the two target datasets were added properly
        self.assertEqual(self.eval.target_datasets[0].variable, self.variable)
        self.assertEqual(self.eval.target_datasets[1].variable, self.other_var)

        # Make sure the three metrics were added properly
        # The two Bias metrics are "binary" metrics
        self.assertEqual(len(self.eval.metrics), 2)
        # TemporalStdDev is a "unary" metric and should be stored as such
        self.assertEqual(len(self.eval.unary_metrics), 1)
        self.eval.run()
        out_str = (
            "<Evaluation - ref_dataset: {}, "
            "target_dataset(s): {}, "
            "binary_metric(s): {}, "
            "unary_metric(s): {}, "
            "subregion(s): {}>"
        ).format(
            str(self.test_dataset),
            [str(ds) for ds in target_datasets],
            [str(m) for m in metrics],
            [str(u) for u in unary_metrics],
            None
        )
        self.assertEqual(str(self.eval), out_str)

    def test_valid_ref_dataset_setter(self):
        self.eval.ref_dataset = self.another_test_dataset
        self.assertEqual(self.eval.ref_dataset.variable,
                         self.another_test_dataset.variable)

    def test_invalid_ref_dataset(self):
        with self.assertRaises(TypeError):
            self.eval.ref_dataset = "This isn't a Dataset object"

    def test_valid_subregion(self):
        bound = Bounds(
            lat_min=-10, lat_max=10,
            lon_min=-20, lon_max=20,
            start=dt.datetime(2000, 1, 1), end=dt.datetime(2001, 1, 1))

        self.eval.subregions = [bound, bound]
        self.assertEquals(len(self.eval.subregions), 2)

    def test_invalid_subregion_bound(self):
        bound = "This is not a bounds object"

        with self.assertRaises(TypeError):
            self.eval.subregions = [bound]

    def test_add_ref_dataset(self):
        self.eval = Evaluation(self.test_dataset, [], [])

        self.assertEqual(self.eval.ref_dataset.variable, self.variable)

    def test_add_valid_dataset(self):
        self.eval.add_dataset(self.test_dataset)

        self.assertEqual(self.eval.target_datasets[0].variable,
                         self.variable)

    def test_add_invalid_dataset(self):
        with self.assertRaises(TypeError):
#.........這裏部分代碼省略.........
開發者ID:MichaelArthurAnderson,項目名稱:climate,代碼行數:103,代碼來源:test_evaluation.py


注:本文中的ocw.evaluation.Evaluation.run方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。