當前位置: 首頁>>代碼示例>>Python>>正文


Python Stream.append方法代碼示例

本文整理匯總了Python中obspy.core.stream.Stream.append方法的典型用法代碼示例。如果您正苦於以下問題:Python Stream.append方法的具體用法?Python Stream.append怎麽用?Python Stream.append使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在obspy.core.stream.Stream的用法示例。


在下文中一共展示了Stream.append方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: join_NERT

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def join_NERT(a,b):

    new=Stream()

    for i in range(len(a)):
        if a[i].stats['station'] == b[i].stats['station'] and \
           a[i].stats['channel'] == b[i].stats['channel']:
           new.append(a[i])
        else:
           new.append(a[i])
           new.append(b[i])
    
    return new
開發者ID:fabriziobernardi,項目名稱:wavesdownloader,代碼行數:15,代碼來源:myUsefullFuncs.py

示例2: purgeListStation

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def purgeListStation(st,args,ty):

    new=Stream()
    ra=args.radius.split()
    lii = []

    # select for distances
    if(ty=='d'):
      for i in range(len(st)):
          if(st[i].stats.gcarc >= eval(ra[0]) and st[i].stats.gcarc <= eval(ra[1])):
            new.append(st[i])

    return new
開發者ID:fabriziobernardi,項目名稱:wavesdownloader,代碼行數:15,代碼來源:myUsefullFuncs.py

示例3: saveData

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
 def saveData(self, filename = None):
     stream = Stream()
     for i in range(0,self.ntraces):
         curr_trace = self.data[:,i]
         curr_trace = np.require(curr_trace, dtype='float32')
         temp = Trace(data=curr_trace)
         # Attributes in trace.stats will overwrite everything in
         # trace.stats.segy.trace_header
         temp.stats.delta = 0.01
             # Add trace to stream
         stream.append(temp)
     print "Stream object before writing..."
     print stream
     stream.write(filename, format="SEGY", data_encoding=1,
                 byteorder=sys.byteorder)
開發者ID:amine85,項目名稱:seismic-data-processing,代碼行數:17,代碼來源:model.py

示例4: poisson_segmenting

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def poisson_segmenting(poisson_times, noise_trace, samp_rate, delta, st_event_2):
    """ Sets out the events at the poisson times (from poisson_interevent), and adds the noise onto the event at that point.
    """
    st_events_poisson = Stream()
    for i in range(0, len(poisson_times)):
        testnoise = np.array(noise_trace)
        noise_portion = testnoise[(poisson_times[i]*int(samp_rate)):
                                  (poisson_times[i]*int(samp_rate)) + len(st_event_2)]
        noise_plus_event_arr = noise_portion + np.array(st_event_2)
        noise_plus_event = Trace(noise_plus_event_arr)
        noise_plus_event.stats.sampling_rate = samp_rate
        noise_plus_event.stats.delta = delta
        noise_plus_event.stats.starttime =  noise_trace.stats.starttime + poisson_times[i]
        #plt.plot(noise_plus_event)
        st_events_poisson.append(noise_plus_event)
    st_events_poisson[-1].stats.endtime+100  

    return st_events_poisson
開發者ID:rclement1,項目名稱:python,代碼行數:20,代碼來源:noisecodes.py

示例5: stream_stack_distance_intervals

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def stream_stack_distance_intervals(st, interval):
    """ Stack average traces in a stream if their distance difference is
    smaller than interval.

    The stream containing a number of traces with given distance (e.g. from source)
    is used to create a number of equally spaced traces by averaging traces that fall
    into the same distance bin. If interval is a scalar the bins are equally spaced with
    a width of interval. If interval is a sequence its elements define the lower distance
    limit of the bins.

    :type st: :class:`~obspy.core.stream.Stream`
    :param st: Stream fo be used for stacking.
    :type interval: scalar os array like
    :param interval: width of bins in case of scalar or smaller edge of
        bins if interval is a sequence.
    :rtype sst: :class:`~obspy.core.stream.Stream`
    :return: **sst**: stacked stream
    """
    dist = []
    npts = []
    for tr in st:
        dist.append(tr.stats.sac['dist'])
        npts.append(tr.stats['npts'])
    
    if not hasattr(interval, "__len__"):
        bins = np.arange(min(dist), max(dist),interval)
    else:
        bins = np.array(interval)
    
    sst = Stream()
    for ii in bins:
        sst.append(Trace(data=np.zeros(max(npts),dtype=np.float64),header={
            'network':'stack','station':str(ii),'location':'',
            'channel':st[0].stats['channel'],'starttime':st[0].stats['starttime'],'sampling_rate':st[0].stats['sampling_rate'],
            'sac':{'dist':ii,'az':0,'evla':0.,'evlo':0.,'stla':ii/(np.pi*6371000)*180.,'stlo':0.}}))
    count = np.zeros_like(bins)
    for tr in st:
        ind = sum((tr.stats.sac['dist'] - bins)>=0)-1
        sst[ind].data[0:tr.stats['npts']] += tr.data
        count[ind] += 1
    for ind, tr in enumerate(sst):
        tr.data /= count[ind]
    
    return sst
開發者ID:ftilmann,項目名稱:miic,代碼行數:46,代碼來源:stream.py

示例6: dataclean

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def dataclean(alltrigs, opt, flag=1):

    """
    Examine triggers and weed out spikes and calibration pulses using kurtosis and
    outlier ratios
    
    alltrigs: triggers output from triggering
    opt: opt from config
    flag: 1 if defining window to check, 0 if want to check whole waveform for spikes
        (note that different threshold values should be used for different window lengths)
    
    Returns good trigs (trigs) and junk (junk)
    """
    
    trigs=Stream()
    junk=Stream()
    for i in range(len(alltrigs)):
        #define data
        dat=alltrigs[i].data
        if flag==0:
            datcut=dat
        else:
            datcut=alltrigs[i].data[range(int((opt.ptrig-opt.kurtwin/2)*opt.samprate),
                int((opt.ptrig+opt.kurtwin/2)*opt.samprate))]
        
        #calculate kurtosis in window
        k = stats.kurtosis(datcut)
        #compute kurtosis of frequency amplitude spectrum next
        
        datf = np.absolute(fft(dat))
        kf = stats.kurtosis(datf)
        #calculate outlier ratio using z ((data-median)/mad), outliers have z>4.45
        mad = np.median(np.absolute(dat - np.median(dat)))
        z=(dat-np.median(dat))/mad
        orm = len(z[z>4.45])/len(z)
        if k<opt.kurtmax and orm<opt.oratiomax and kf<opt.kurtfmax:
            trigs.append(alltrigs[i])
        else:
            junk.append(alltrigs[i])
                
    return trigs, junk
開發者ID:jrhartog,項目名稱:REDPyAlpha,代碼行數:43,代碼來源:trigger.py

示例7: corr_trace_to_obspy

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def corr_trace_to_obspy(corr_trace):
    """ Convert a correlation trace dictionary to an obspy trace.

    Convert a single correlation trace (or a list of) in an
    :class:`~obspy.core.trace.Trace` (or :class:`~obspy.core.stream.Stream`)
    object.

    :type corr_trace: dictionary of type correlation trace or list of these
    :param corr_trace: input date to be converted

    :rtype: :class:`~obspy.core.trace.Trace` if ``corr_trace`` is a dict
        and :class:`~obspy.core.stream.Stream` if ``corr_trace`` is a list of
        dicts
    :return: **st**: the obspy object containing the data
    """

    if isinstance(corr_trace, list):
        st = Stream()
        for tr in corr_trace:
            st.append(_single_corr_trace_to_obspy_trace(tr))
    else:
        st = _single_corr_trace_to_obspy_trace(corr_trace)
    return st
開發者ID:ftilmann,項目名稱:miic,代碼行數:25,代碼來源:stream.py

示例8: removeGaps

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def removeGaps(self, min_gap, max_gap, verbose="False"): 

    """
    Returns the Stream object without trace gaps/overlaps.
    :param min_gap: All gaps smaller than this value will be omitted. The
          value is assumed to be in seconds. Defaults to None.
    :param max_gap: All gaps larger than this value will be omitted. The
          value is assumed to be in seconds. Defaults to None.
    :param verbose: stdout traces removed. Default verbose=False
    """

    new=Stream()
    self.sort()
    gap_list = []

    # since one would be left
    if(len(self) != 0):
      self.append(self[0])

    for _i in xrange(1,len(self.traces) - 0):
       # skip traces with different network, station, location or channel
       if self.traces[_i - 1].id != self.traces[_i + 0].id:
          new.append(self.traces[_i])
          continue
       # different sampling rates should always result in a gap or overlap
       if self.traces[_i - 1].stats.delta == self.traces[_i + 0].stats.delta:
          flag = True
       else:
          flag = False
       stats = self.traces[_i - 1].stats
       stime = stats['endtime']
       etime = self.traces[_i + 0].stats['starttime']
       delta = etime.timestamp - stime.timestamp

       # Check that any overlap is not larger than the trace coverage
       if delta < 0:
             temp = self.traces[_i + 0].stats['endtime'].timestamp - \
                    etime.timestamp
             if (delta * -1) > temp:
                 delta = -1 * temp
       # Check gap/overlap criteria
       if min_gap and delta < min_gap:
             new.append(self.traces[_i - 1])
             continue
       if max_gap and delta > max_gap:
             new.append(self.traces[_i - 1])
             continue
       # Number of missing samples
       nsamples = int(round(fabs(delta) * stats['sampling_rate']))
       # skip if is equal to delta (1 / sampling rate)
       if flag and nsamples == 1:
             new.append(self.traces[_i - 1])
             continue
       elif delta > 0:
             nsamples -= 1
       else:
             nsamples += 1

       gap_list.append([_i,stats['network'], stats['station'],
                             stats['location'], stats['channel'],
                             stime, etime, delta, nsamples])
       if verbose == "True" or verbose == "TRUE" or verbose == "true":
          print  "Removed because of gap: ",stats['network'],stats['station'],stats['channel'],stime,etime,delta, nsamples

    return new
開發者ID:fabriziobernardi,項目名稱:wavesdownloader,代碼行數:67,代碼來源:myUsefullFuncs.py

示例9: get_preview

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
 def get_preview(self, trace_ids=[], starttime=None, endtime=None,
                 network=None, station=None, location=None, channel=None,
                 pad=False):
     """
     Returns the preview trace.
     """
     # build up query
     session = self.session()
     query = session.query(WaveformChannel)
     # start and end time
     try:
         starttime = UTCDateTime(starttime)
     except:
         starttime = UTCDateTime() - 60 * 20
     finally:
         query = query.filter(WaveformChannel.endtime > starttime.datetime)
     try:
         endtime = UTCDateTime(endtime)
     except:
         # 10 minutes
         endtime = UTCDateTime()
     finally:
         query = query.filter(WaveformChannel.starttime < endtime.datetime)
     # process arguments
     if trace_ids:
         # filter over trace id list
         trace_filter = or_()
         for trace_id in trace_ids:
             temp = trace_id.split('.')
             if len(temp) != 4:
                 continue
             trace_filter.append(and_(
                 WaveformChannel.network == temp[0],
                 WaveformChannel.station == temp[1],
                 WaveformChannel.location == temp[2],
                 WaveformChannel.channel == temp[3]))
         if trace_filter.clauses:
             query = query.filter(trace_filter)
     else:
         # filter over network/station/location/channel id
         kwargs = {'network': network, 'station': station,
                   'location': location, 'channel': channel}
         for key, value in kwargs.items():
             if value is None:
                 continue
             col = getattr(WaveformChannel, key)
             if '*' in value or '?' in value:
                 value = value.replace('?', '_')
                 value = value.replace('*', '%')
                 query = query.filter(col.like(value))
             else:
                 query = query.filter(col == value)
     # execute query
     results = query.all()
     session.close()
     # create Stream
     st = Stream()
     for result in results:
         preview = result.get_preview()
         st.append(preview)
     # merge and trim
     st = merge_previews(st)
     st.trim(starttime, endtime, pad=pad)
     return st
開發者ID:3rdcycle,項目名稱:obspy,代碼行數:66,代碼來源:client.py

示例10: mergePreviews

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def mergePreviews(stream):
    """
    Merges all preview traces in one Stream object. Does not change the
    original stream because the data needs to be copied anyway.

    :type stream: :class:`~obspy.core.Stream`
    :param stream: Stream object to be merged
    :rtype: :class:`~obspy.core.Stream`
    :return: Merged Stream object.
    """
    copied_traces = copy(stream.traces)
    stream.sort()
    # Group traces by id.
    traces = {}
    dtypes = []
    for trace in stream:
        # Throw away empty traces.
        if trace.stats.npts == 0:
            continue
        if not hasattr(trace.stats, 'preview') or not trace.stats.preview:
            msg = 'Trace\n%s\n is no preview file.' % str(trace)
            raise Exception(msg)
        traces.setdefault(trace.id, [])
        traces[trace.id].append(trace)
        dtypes.append(trace.data.dtype)
    if len(traces) == 0:
        return Stream()
    # Initialize new Stream object.
    new_stream = Stream()
    for value in traces.values():
        if len(value) == 1:
            new_stream.append(value[0])
            continue
        # All traces need to have the same delta value and also be on the same
        # grid spacing. It is enough to only check the sampling rate because
        # the algorithm that creates the preview assures that the grid spacing
        # is correct.
        sampling_rates = set([tr.stats.sampling_rate for tr in value])
        if len(sampling_rates) != 1:
            msg = 'More than one sampling rate for traces with id %s.' % \
                  value[0].id
            raise Exception(msg)
        delta = value[0].stats.delta
        # Check dtype.
        dtypes = set([str(tr.data.dtype) for tr in value])
        if len(dtypes) > 1:
            msg = 'Different dtypes for traces with id %s' % value[0].id
            raise Exception(msg)
        dtype = dtypes.pop()
        # Get the minimum start and maximum endtime for all traces.
        min_starttime = min([tr.stats.starttime for tr in value])
        max_endtime = max([tr.stats.endtime for tr in value])
        samples = (max_endtime - min_starttime) / delta + 1
        data = np.empty(samples, dtype=dtype)
        # Fill with negative one values which corresponds to a gap.
        data[:] = -1
        # Create trace and give starttime.
        new_trace = Trace(data=data, header=value[0].stats)
        # Loop over all traces in value and add to data.
        for trace in value:
            start_index = int((trace.stats.starttime - min_starttime) / delta)
            end_index = start_index + len(trace.data)
            # Element-by-element comparison.
            data[start_index:end_index] = \
                np.maximum(data[start_index:end_index], trace.data)
        # set npts again, because data is changed in place
        new_trace.stats.npts = len(data)
        new_stream.append(new_trace)
    stream.traces = copied_traces
    return new_stream
開發者ID:egdorf,項目名稱:obspy,代碼行數:72,代碼來源:preview.py

示例11: dataclean

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def dataclean(alltrigs, opt, flag=1):

    """
    Examine triggers and weed out spikes and calibration pulses using kurtosis and
    outlier ratios
    
    alltrigs: triggers output from triggering
    opt: opt from config
    flag: 1 if defining window to check, 0 if want to check whole waveform for spikes
        (note that different threshold values should be used for different window lengths)
    
    Returns good trigs (trigs) and junk (junk)
    """
    
    trigs=Stream()
    junk=Stream()
    for i in range(len(alltrigs)):
            
        njunk = 0
        ntele = 0
        
        for n in range(opt.nsta):
            
            dat = alltrigs[i].data[n*opt.wshape:(n+1)*opt.wshape]
            if flag == 1:
                datcut=dat[range(int((opt.ptrig-opt.kurtwin/2)*opt.samprate),
                    int((opt.ptrig+opt.kurtwin/2)*opt.samprate))]
            else:
                datcut=dat
            
            # Calculate kurtosis in window
            k = stats.kurtosis(datcut)
            # Compute kurtosis of frequency amplitude spectrum next
            datf = np.absolute(fft(dat))
            kf = stats.kurtosis(datf)
            # Calculate outlier ratio using z ((data-median)/mad); outliers have z > 4.45
            mad = np.median(np.absolute(dat - np.median(dat)))
            z = (dat-np.median(dat))/mad
            orm = len(z[z>4.45])/np.array(len(z)).astype(float)
            
            if k >= opt.kurtmax or orm >= opt.oratiomax or kf >= opt.kurtfmax:
                njunk+=1
                
            winstart = opt.ptrig*opt.samprate - opt.winlen/10
            winend = opt.ptrig*opt.samprate - opt.winlen/10 + opt.winlen
            fftwin = np.reshape(fft(dat[winstart:winend]),(opt.winlen,))
            if np.median(np.abs(dat[winstart:winend]))!=0:
                fi = np.log10(np.mean(np.abs(np.real(
                    fftwin[int(opt.fiupmin*opt.winlen/opt.samprate):int(
                    opt.fiupmax*opt.winlen/opt.samprate)])))/np.mean(np.abs(np.real(
                    fftwin[int(opt.filomin*opt.winlen/opt.samprate):int(
                    opt.filomax*opt.winlen/opt.samprate)]))))
                if fi<opt.telefi:
                    ntele+=1
        
        # Allow if there are enough good stations to correlate
        if njunk <= (opt.nsta-opt.ncor) and ntele <= opt.teleok:
            trigs.append(alltrigs[i])
        else:
            junk.append(alltrigs[i])
            
                
    return trigs, junk
開發者ID:iceseismic,項目名稱:REDPy,代碼行數:65,代碼來源:trigger.py

示例12: trigger

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def trigger(st, stC, rtable, opt):

    """
    Run triggering algorithm on a stream of data.

    st: OBSPy stream of data
    rtable: Repeater table contains reference time of previous trigger in samples
    opt: Options object describing station/run parameters

    Returns triggered traces as OBSPy trace object updates ptime for next run 
    """
    
    tr = st[0]
    t = tr.stats.starttime

    cft = coincidence_trigger("classicstalta", opt.trigon, opt.trigoff, stC, opt.nstaC,
        sta=opt.swin, lta=opt.lwin, details=True)
    if len(cft) > 0:
        
        ind = 0
        
        # Slice out the data from st and save the maximum STA/LTA ratio value for
        # use in orphan expiration
        
        # Convert ptime from time of last trigger to seconds before start time
        if rtable.attrs.ptime:
            ptime = (UTCDateTime(rtable.attrs.ptime) - t)
        else:
            ptime = -opt.mintrig
        
        for n in range(len(cft)):
                    
            ttime = cft[n]['time'] # This is a UTCDateTime, not samples
            
            if (ttime >= t + opt.atrig) and (ttime >= t + ptime +
                opt.mintrig) and (ttime < t + len(tr.data)/opt.samprate -
                2*opt.atrig):
                
                ptime = ttime - t
                
                # Slice and save as first trace              
                ttmp = st.slice(ttime - opt.ptrig, ttime + opt.atrig)
                ttmp[0].data = ttmp[0].data[0:opt.wshape] - np.mean(
                    ttmp[0].data[0:opt.wshape])
                for s in range(1,len(ttmp)):
                    ttmp[0].data = np.append(ttmp[0].data, ttmp[s].data[
                        0:opt.wshape] - np.mean(ttmp[s].data[0:opt.wshape]))
                ttmp[0].stats.maxratio = np.max(cft[n]['cft_peaks'])
                if ind is 0:
                    trigs = Stream(ttmp[0])
                    ind = ind+1
                else:
                    trigs = trigs.append(ttmp[0])
                                                         
        if ind is 0:
            return []
        else:
            rtable.attrs.ptime = (t + ptime).isoformat()
            return trigs
    else:
        return []
開發者ID:iceseismic,項目名稱:REDPy,代碼行數:63,代碼來源:trigger.py

示例13: getData

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def getData(tstart, tend, opt):

    """
    Download data from files in a folder, from IRIS, or a Earthworm waveserver
    
    A note on SAC/miniSEED files: as this makes no assumptions about the naming scheme of
    your data files, please ensure that your headers contain the correct SCNL information!

    tstart: UTCDateTime of beginning of period of interest
    tend: UTCDateTime of end of period of interest
    opt: Options object describing station/run parameters
    
    Returns ObsPy stream objects, one for cutting and the other for triggering
    """    
    
    nets = opt.network.split(',')
    stas = opt.station.split(',')
    locs = opt.location.split(',')
    chas = opt.channel.split(',')
    
    st = Stream()
    
    if opt.server == 'SAC' or opt.server == 'miniSEED':
    
        # Generate list of files
        if opt.server == 'SAC':
            flist = list(itertools.chain.from_iterable(glob.iglob(os.path.join(
                root,'*.sac')) for root, dirs, files in os.walk(opt.sacdir)))+list(
                itertools.chain.from_iterable(glob.iglob(os.path.join(
                root,'*.SAC')) for root, dirs, files in os.walk(opt.sacdir)))
        elif opt.server == 'miniSEED':
            flist = list(itertools.chain.from_iterable(glob.iglob(os.path.join(
                root,'*.mseed')) for root, dirs, files in os.walk(opt.mseeddir)))+list(
                itertools.chain.from_iterable(glob.iglob(os.path.join(
                root,'*.MSEED')) for root, dirs, files in os.walk(opt.mseeddir)))
                
        # Determine which subset of files to load based on start and end times and
        # station name; we'll fully deal with stations below
        flist_sub = []
        for f in flist:
            # Load header only
            stmp = obspy.read(f, headonly=True)
            # Check if station is contained in the stas list
            if stmp[0].stats.station in stas:
                # Check if contains either start or end time
                ststart = stmp[0].stats.starttime
                stend = stmp[0].stats.endtime
                if (ststart<=tstart and tstart<=stend) or (ststart<=tend and
                    tend<=stend) or (tstart<=stend and ststart<=tend):
                    flist_sub.append(f)
        
        # Fully load data from file
        stmp = Stream()
        for f in flist_sub:
            tmp = obspy.read(f, starttime=tstart, endtime=tend+opt.maxdt)
            if len(tmp) > 0:
                stmp = stmp.extend(tmp)
    
        # Filter and merge
        stmp = stmp.filter('bandpass', freqmin=opt.fmin, freqmax=opt.fmax, corners=2,
            zerophase=True)
        stmp = stmp.taper(0.05,type='hann',max_length=opt.mintrig)
        for m in range(len(stmp)):
            if stmp[m].stats.sampling_rate != opt.samprate:
                stmp[m] = stmp[m].resample(opt.samprate)
        stmp = stmp.merge(method=1, fill_value=0)
        
        # Only grab stations/channels that we want and in order
        netlist = []
        stalist = []
        chalist = []
        loclist = []
        for s in stmp:
            stalist.append(s.stats.station)
            chalist.append(s.stats.channel)
            netlist.append(s.stats.network)
            loclist.append(s.stats.location)
            
        # Find match of SCNL in header or fill empty
        for n in range(len(stas)):
            for m in range(len(stalist)):
                if (stas[n] in stalist[m] and chas[n] in chalist[m] and nets[n] in
                    netlist[m] and locs[n] in loclist[m]):
                    st = st.append(stmp[m])
            if len(st) == n:
                print("Couldn't find "+stas[n]+'.'+chas[n]+'.'+nets[n]+'.'+locs[n])
                trtmp = Trace()
                trtmp.stats.sampling_rate = opt.samprate
                trtmp.stats.station = stas[n]
                st = st.append(trtmp.copy())
    
    else:   
     
        if '.' not in opt.server:
            client = Client(opt.server)
        else:
            client = EWClient(opt.server, opt.port)
        
        for n in range(len(stas)):
            try:
#.........這裏部分代碼省略.........
開發者ID:ahotovec,項目名稱:REDPy,代碼行數:103,代碼來源:trigger.py

示例14: stream_stack_distance_intervals

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
def stream_stack_distance_intervals(st, interval, norm_type='no'):
    """ Stack average traces in a stream if their distance difference is
    smaller than interval.

    The stream containing a number of traces with given distance (e.g. from source)
    is used to create a number of equally spaced traces by averaging traces that fall
    into the same distance bin. If interval is a scalar the bins are equally spaced with
    a width of interval. If interval is a sequence its elements define the lower distance
    limit of the bins.

    :type st: :class:`~obspy.core.stream.Stream`
    :param st: Stream fo be used for stacking.
    :type interval: scalar os array like
    :param interval: width of bins in case of scalar or smaller edge of
        bins if interval is a sequence.
    :type norm_type: str
    :param norm_type: normalization to be applied within bins before stacking
        Possibilities are `no` for no normalization, `max` for normalization 
        to maximum, `rms` for normaliation to root mean square or `abs_mean`
        for normalization to the mean of the absolute value.
    :rtype sst: :class:`~obspy.core.stream.Stream`
    :return: **sst**: stacked stream
    """
    dist = []
    npts = []
    for tr in st:
        dist.append(tr.stats.sac['dist'])
        npts.append(tr.stats['npts'])
    
    if not hasattr(interval, "__len__"):
        bins = np.arange(min(dist), max(dist),interval)
    else:
        bins = np.array(interval)
    
    sst = Stream()
    for ii in bins:
        sst.append(Trace(data=np.zeros(max(npts),dtype=np.float64),header={
            'network':'stack','station':str(ii),'location':'',
            'channel':st[0].stats['channel'],'starttime':st[0].stats['starttime'],'sampling_rate':st[0].stats['sampling_rate'],
            'sac':{'dist':ii,'az':0,'evla':0.,'evlo':0.,'stla':ii/(np.pi*6371000)*180.,'stlo':0.}}))
    count = np.zeros_like(bins)
    weight = np.zeros_like(bins)
    for tr in st:
        ind = sum((tr.stats.sac['dist'] - bins)>=0)-1
        if norm_type == 'no':
            norm = 1.
        elif norm_type == 'max':
            norm = np.max(np.abs(tr.data))
        elif norm_type == 'rms':
            norm = np.sqrt(np.mean(tr.data**2))
        elif norm_type == 'abs_mean':
            norm = np.mean(np.abs(tr.data))
        else:
            raise ValueError('norm_type %s not implemented' % norm_type)
        sst[ind].data[0:tr.stats['npts']] += (tr.data/norm)
        weight[ind] += norm
        count[ind] += 1
    for ind, tr in enumerate(sst):
        tr.data *= weight[ind]/(count[ind]**2)
    
    return sst
開發者ID:miic-sw,項目名稱:miic,代碼行數:63,代碼來源:stream.py

示例15: Stream

# 需要導入模塊: from obspy.core.stream import Stream [as 別名]
# 或者: from obspy.core.stream.Stream import append [as 別名]
        return None, None

    # Create the Stream obj and populate it
    st = Stream()
    for (_, rec) in df.iterrows():
        fname = os.path.join(rec['path'], rec['file'])
        for tr in _read(fname, fformat, headonly=False, **kwargs).traces:
            if (networks_ok) and (tr.stats.network not in networks):
                continue
            if (stations_ok) and (tr.stats.station not in stations):
                continue
            if (locations_ok) and (tr.stats.location not in locations):
                continue
            if (channels_ok) and (tr.stats.channel not in channels):
                continue
            st.append(tr)

    if st.count() > 0:
        # If the starttime is given then it trims the resulting traces
        if starttime:
            st.trim(starttime=starttime, endtime=endtime,
                    nearest_sample=nearest_sample)

        st.merge(method=1, fill_value=0, interpolation_samples=1)
    else:
        print "Empty stream"

    n_trace = st.count()
    return st, n_trace

開發者ID:ftilmann,項目名稱:miic,代碼行數:31,代碼來源:db.py


注:本文中的obspy.core.stream.Stream.append方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。