當前位置: 首頁>>代碼示例>>Python>>正文


Python date.DateEncoder類代碼示例

本文整理匯總了Python中nupic.encoders.date.DateEncoder的典型用法代碼示例。如果您正苦於以下問題:Python DateEncoder類的具體用法?Python DateEncoder怎麽用?Python DateEncoder使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了DateEncoder類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

  def setUp(self):
    # 3 bits for season, 1 bit for day of week, 1 for weekend, 5 for time of
    # day
    # use of forced is not recommended, used here for readability, see scalar.py
    self._e = DateEncoder(season=3, dayOfWeek=1, weekend=1, timeOfDay=5)
    # in the middle of fall, Thursday, not a weekend, afternoon - 4th Nov,
    # 2010, 14:55
    self._d = datetime.datetime(2010, 11, 4, 14, 55)
    self._bits = self._e.encode(self._d)
    # season is aaabbbcccddd (1 bit/month) # TODO should be <<3?
    # should be 000000000111 (centered on month 11 - Nov)
    seasonExpected = [0,0,0,0,0,0,0,0,0,1,1,1]

    # week is MTWTFSS
    # contrary to localtime documentation, Monday = 0 (for python
    #  datetime.datetime.timetuple()
    dayOfWeekExpected = [0,0,0,1,0,0,0]

    # not a weekend, so it should be "False"
    weekendExpected = [1, 0]

    # time of day has radius of 4 hours and w of 5 so each bit = 240/5
    # min = 48min 14:55 is minute 14*60 + 55 = 895; 895/48 = bit 18.6
    # should be 30 bits total (30 * 48 minutes = 24 hours)
    timeOfDayExpected = (
      [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0])
    self._expected = numpy.array(seasonExpected +
                                 dayOfWeekExpected +
                                 weekendExpected +
                                 timeOfDayExpected, dtype=defaultDtype)
開發者ID:Erichy94,項目名稱:nupic,代碼行數:30,代碼來源:date_test.py

示例2: initialize

  def initialize(self):

    # Initialize the RDSE with a resolution; calculated from the data min and
    # max, the resolution is specific to the data stream.
    rangePadding = abs(self.inputMax - self.inputMin) * 0.2
    minVal = self.inputMin - rangePadding
    maxVal = (self.inputMax + rangePadding
              if self.inputMin != self.inputMax
              else self.inputMin + 1)
    numBuckets = 130.0
    resolution = max(0.001, (maxVal - minVal) / numBuckets)
    self.valueEncoder = RandomDistributedScalarEncoder(resolution, seed=42)
    self.encodedValue = np.zeros(self.valueEncoder.getWidth(),
                                 dtype=np.uint32)

    # Initialize the timestamp encoder
    self.timestampEncoder = DateEncoder(timeOfDay=(21, 9.49, ))
    self.encodedTimestamp = np.zeros(self.timestampEncoder.getWidth(),
                                     dtype=np.uint32)

    inputWidth = (self.timestampEncoder.getWidth() +
                  self.valueEncoder.getWidth())

    self.sp = SpatialPooler(**{
      "globalInhibition": True,
      "columnDimensions": [2048],
      "inputDimensions": [inputWidth],
      "potentialRadius": inputWidth,
      "numActiveColumnsPerInhArea": 40,
      "seed": 1956,
      "potentialPct": 0.8,
      "boostStrength": 0.0,
      "synPermActiveInc": 0.003,
      "synPermConnected": 0.2,
      "synPermInactiveDec": 0.0005,
    })
    self.spOutput = np.zeros(2048, dtype=np.float32)

    self.tm = TemporalMemory(**{
      "activationThreshold": 20,
      "cellsPerColumn": 32,
      "columnDimensions": (2048,),
      "initialPermanence": 0.24,
      "maxSegmentsPerCell": 128,
      "maxSynapsesPerSegment": 128,
      "minThreshold": 13,
      "maxNewSynapseCount": 31,
      "permanenceDecrement": 0.008,
      "permanenceIncrement": 0.04,
      "seed": 1960,
    })

    if self.useLikelihood:
      learningPeriod = math.floor(self.probationaryPeriod / 2.0)
      self.anomalyLikelihood = anomaly_likelihood.AnomalyLikelihood(
        claLearningPeriod=learningPeriod,
        estimationSamples=self.probationaryPeriod - learningPeriod,
        reestimationPeriod=100
      )
開發者ID:mewbak,項目名稱:nupic.research,代碼行數:59,代碼來源:numentaTM_low_level.py

示例3: testHoliday

  def testHoliday(self):
    '''look at holiday more carefully because of the smooth transition'''
    e = DateEncoder(holiday=5)
    holiday = numpy.array([0,0,0,0,0,1,1,1,1,1], dtype='uint8')
    notholiday = numpy.array([1,1,1,1,1,0,0,0,0,0], dtype='uint8')
    holiday2 = numpy.array([0,0,0,1,1,1,1,1,0,0], dtype='uint8')

    d = datetime.datetime(2010, 12, 25, 4, 55)
    self.assertTrue((e.encode(d) == holiday).all())

    d = datetime.datetime(2008, 12, 27, 4, 55)
    self.assertTrue((e.encode(d) == notholiday).all())

    d = datetime.datetime(1999, 12, 26, 8, 00)
    self.assertTrue((e.encode(d) == holiday2).all())

    d = datetime.datetime(2011, 12, 24, 16, 00)
    self.assertTrue((e.encode(d) == holiday2).all())
開發者ID:ChiralBehaviors,項目名稱:nupic,代碼行數:18,代碼來源:date_test.py

示例4: testHolidayMultiple

  def testHolidayMultiple(self):
    """look at holiday more carefully because of the smooth transition"""
    # use of forced is not recommended, used here for readability, see
    # scalar.py
    e = DateEncoder(holiday=5, forced=True, holidays=[(12, 25), (2018, 4, 1), (2017, 4, 16)])
    holiday = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype="uint8")
    notholiday = numpy.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0], dtype="uint8")

    d = datetime.datetime(2011, 12, 25, 4, 55)
    self.assertTrue(numpy.array_equal(e.encode(d), holiday))

    d = datetime.datetime(2007, 12, 2, 4, 55)
    self.assertTrue(numpy.array_equal(e.encode(d), notholiday))

    d = datetime.datetime(2018, 4, 1, 16, 10)
    self.assertTrue(numpy.array_equal(e.encode(d), holiday))

    d = datetime.datetime(2017, 4, 16, 16, 10)
    self.assertTrue(numpy.array_equal(e.encode(d), holiday))
開發者ID:Erichy94,項目名稱:nupic,代碼行數:19,代碼來源:date_test.py

示例5: testHoliday

  def testHoliday(self):
    '''look at holiday more carefully because of the smooth transition'''
    # use of forced is not recommended, used here for readibility, see scalar.py
    e = DateEncoder(holiday=5, forced=True)
    holiday = numpy.array([0,0,0,0,0,1,1,1,1,1], dtype='uint8')
    notholiday = numpy.array([1,1,1,1,1,0,0,0,0,0], dtype='uint8')
    holiday2 = numpy.array([0,0,0,1,1,1,1,1,0,0], dtype='uint8')

    d = datetime.datetime(2010, 12, 25, 4, 55)
    self.assertTrue((e.encode(d) == holiday).all())

    d = datetime.datetime(2008, 12, 27, 4, 55)
    self.assertTrue((e.encode(d) == notholiday).all())

    d = datetime.datetime(1999, 12, 26, 8, 00)
    self.assertTrue((e.encode(d) == holiday2).all())

    d = datetime.datetime(2011, 12, 24, 16, 00)
    self.assertTrue((e.encode(d) == holiday2).all())
開發者ID:AI-Cdrone,項目名稱:nupic,代碼行數:19,代碼來源:date_test.py

示例6: testHoliday

  def testHoliday(self):
    """look at holiday more carefully because of the smooth transition"""
    # use of forced is not recommended, used here for readability, see
    # scalar.py
    e = DateEncoder(holiday=5, forced=True)
    holiday = numpy.array([0,0,0,0,0,1,1,1,1,1], dtype="uint8")
    notholiday = numpy.array([1,1,1,1,1,0,0,0,0,0], dtype="uint8")
    holiday2 = numpy.array([0,0,0,1,1,1,1,1,0,0], dtype="uint8")

    d = datetime.datetime(2010, 12, 25, 4, 55)
    self.assertTrue(numpy.array_equal(e.encode(d), holiday))

    d = datetime.datetime(2008, 12, 27, 4, 55)
    self.assertTrue(numpy.array_equal(e.encode(d), notholiday))

    d = datetime.datetime(1999, 12, 26, 8, 00)
    self.assertTrue(numpy.array_equal(e.encode(d), holiday2))

    d = datetime.datetime(2011, 12, 24, 16, 00)
    self.assertTrue(numpy.array_equal(e.encode(d), holiday2))
開發者ID:Erichy94,項目名稱:nupic,代碼行數:20,代碼來源:date_test.py

示例7: testWeekend

  def testWeekend(self):
    """Test weekend encoder"""
    # use of forced is not recommended, used here for readability, see scalar.py
    e = DateEncoder(customDays=(21, ["sat", "sun", "fri"]), forced=True)
    mon = DateEncoder(customDays=(21, "Monday"), forced=True)

    e2 = DateEncoder(weekend=(21, 1), forced=True)
    d = datetime.datetime(1988, 5, 29, 20, 00)
    self.assertTrue(numpy.array_equal(e.encode(d), e2.encode(d)))
    for _ in range(300):
      d = d+datetime.timedelta(days=1)
      self.assertTrue(numpy.array_equal(e.encode(d), e2.encode(d)))

      #Make sure
      if mon.decode(mon.encode(d))[0]["Monday"][0][0][0] == 1.0:
        self.assertEqual(d.weekday(), 0)
      else:
        self.assertNotEqual(d.weekday(), 0)
開發者ID:Erichy94,項目名稱:nupic,代碼行數:18,代碼來源:date_test.py

示例8: __init__

 def __init__(self):
     self.lat = ScalarEncoder(name='latitude',  w=3, n=100, minval=-90, maxval=90,
                     periodic=False)
     self.long= ScalarEncoder(name='longitude',  w=3, n=100, minval=-180, maxval=180,
                     periodic=True)
     self.timeenc= DateEncoder(season=0, dayOfWeek=1, weekend=3, timeOfDay=5)
     self.likes = ScalarEncoder(name='likes',  w=3, n=50, minval=0, maxval=100000,
                     periodic=False)
     self.people = ScalarEncoder(name='numpeople',  w=3, n=20, minval=0, maxval=100,
                     periodic=False)
     self.categories = SDRCategoryEncoder(n=87, w=3, categoryList = None,
                          name="cats", verbosity=0)
     self.run()
開發者ID:firetix,項目名稱:BoringFriends,代碼行數:13,代碼來源:AnomalyDetector.py

示例9: testReadWrite

  def testReadWrite(self):
    originalTS = datetime.datetime(1997, 8, 29, 2, 14)
    originalValue = self._e.encode(originalTS)

    proto1 = DateEncoderProto.new_message()
    self._e.write(proto1)

    # Write the proto to a temp file and read it back into a new proto
    with tempfile.TemporaryFile() as f:
      proto1.write(f)
      f.seek(0)
      proto2 = DateEncoderProto.read(f)

    encoder = DateEncoder.read(proto2)

    self.assertIsInstance(encoder, DateEncoder)
    self.assertEqual(encoder.width, self._e.width)
    self.assertEqual(encoder.weekendOffset, self._e.weekendOffset)
    self.assertEqual(encoder.timeOfDayOffset, self._e.timeOfDayOffset)
    self.assertEqual(encoder.seasonOffset, self._e.seasonOffset)
    self.assertEqual(encoder.dayOfWeekOffset, self._e.dayOfWeekOffset)
    self.assertIsInstance(encoder.customDaysEncoder,
                          self._e.customDaysEncoder.__class__)
    self.assertIsInstance(encoder.dayOfWeekEncoder,
                          self._e.dayOfWeekEncoder.__class__)
    self.assertIsInstance(encoder.seasonEncoder,
                          self._e.seasonEncoder.__class__)
    self.assertIsInstance(encoder.timeOfDayEncoder,
                          self._e.timeOfDayEncoder.__class__)
    self.assertIsInstance(encoder.weekendEncoder,
                          self._e.weekendEncoder.__class__)
    self.assertTrue(numpy.array_equal(self._bits, encoder.encode(self._d)))
    self.assertTrue(numpy.array_equal(encoder.encode(originalTS),
                                      originalValue))
    self.assertEqual(self._e.decode(encoder.encode(self._d)),
                     encoder.decode(self._e.encode(self._d)))
開發者ID:Erichy94,項目名稱:nupic,代碼行數:36,代碼來源:date_test.py

示例10: runHotgym

def runHotgym(numRecords):
  with open(_PARAMS_PATH, "r") as f:
    modelParams = yaml.safe_load(f)["modelParams"]
    enParams = modelParams["sensorParams"]["encoders"]
    spParams = modelParams["spParams"]
    tmParams = modelParams["tmParams"]

  timeOfDayEncoder = DateEncoder(
    timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
  weekendEncoder = DateEncoder(
    weekend=enParams["timestamp_weekend"]["weekend"])
  scalarEncoder = RandomDistributedScalarEncoder(
    enParams["consumption"]["resolution"])

  encodingWidth = (timeOfDayEncoder.getWidth()
                   + weekendEncoder.getWidth()
                   + scalarEncoder.getWidth())

  sp = SpatialPooler(
    # How large the input encoding will be.
    inputDimensions=(encodingWidth),
    # How many mini-columns will be in the Spatial Pooler.
    columnDimensions=(spParams["columnCount"]),
    # What percent of the columns"s receptive field is available for potential
    # synapses?
    potentialPct=spParams["potentialPct"],
    # This means that the input space has no topology.
    globalInhibition=spParams["globalInhibition"],
    localAreaDensity=spParams["localAreaDensity"],
    # Roughly 2%, giving that there is only one inhibition area because we have
    # turned on globalInhibition (40 / 2048 = 0.0195)
    numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
    # How quickly synapses grow and degrade.
    synPermInactiveDec=spParams["synPermInactiveDec"],
    synPermActiveInc=spParams["synPermActiveInc"],
    synPermConnected=spParams["synPermConnected"],
    # boostStrength controls the strength of boosting. Boosting encourages
    # efficient usage of SP columns.
    boostStrength=spParams["boostStrength"],
    # Random number generator seed.
    seed=spParams["seed"],
    # TODO: is this useful?
    # Determines if inputs at the beginning and end of an input dimension should
    # be considered neighbors when mapping columns to inputs.
    wrapAround=False
  )

  tm = TemporalMemory(
    # Must be the same dimensions as the SP
    columnDimensions=(tmParams["columnCount"],),
    # How many cells in each mini-column.
    cellsPerColumn=tmParams["cellsPerColumn"],
    # A segment is active if it has >= activationThreshold connected synapses
    # that are active due to infActiveState
    activationThreshold=tmParams["activationThreshold"],
    initialPermanence=tmParams["initialPerm"],
    # TODO: This comes from the SP params, is this normal
    connectedPermanence=spParams["synPermConnected"],
    # Minimum number of active synapses for a segment to be considered during
    # search for the best-matching segments.
    minThreshold=tmParams["minThreshold"],
    # The max number of synapses added to a segment during learning
    maxNewSynapseCount=tmParams["newSynapseCount"],
    permanenceIncrement=tmParams["permanenceInc"],
    permanenceDecrement=tmParams["permanenceDec"],
    predictedSegmentDecrement=0.0,
    maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
    maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
    seed=tmParams["seed"]
  )

  classifier = SDRClassifierFactory.create()
  results = []
  with open(_INPUT_FILE_PATH, "r") as fin:
    reader = csv.reader(fin)
    headers = reader.next()
    reader.next()
    reader.next()

    for count, record in enumerate(reader):

      if count >= numRecords: break

      # Convert data string into Python date object.
      dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
      # Convert data value string into float.
      consumption = float(record[1])

      # To encode, we need to provide zero-filled numpy arrays for the encoders
      # to populate.
      timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
      weekendBits = numpy.zeros(weekendEncoder.getWidth())
      consumptionBits = numpy.zeros(scalarEncoder.getWidth())

      # Now we call the encoders create bit representations for each value.
      timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
      weekendEncoder.encodeIntoArray(dateString, weekendBits)
      scalarEncoder.encodeIntoArray(consumption, consumptionBits)

      # Concatenate all these encodings into one large encoding for Spatial
#.........這裏部分代碼省略.........
開發者ID:mrcslws,項目名稱:nupic,代碼行數:101,代碼來源:complete-algo-example.py

示例11: NumentaTMLowLevelDetector

class NumentaTMLowLevelDetector(AnomalyDetector):
  """The 'numentaTM' detector, but not using the CLAModel or network API """
  def __init__(self, *args, **kwargs):
    super(NumentaTMLowLevelDetector, self).__init__(*args, **kwargs)

    self.valueEncoder = None
    self.encodedValue = None
    self.timestampEncoder = None
    self.encodedTimestamp = None
    self.sp = None
    self.spOutput = None
    self.tm = None
    self.anomalyLikelihood = None

    # Set this to False if you want to get results based on raw scores
    # without using AnomalyLikelihood. This will give worse results, but
    # useful for checking the efficacy of AnomalyLikelihood. You will need
    # to re-optimize the thresholds when running with this setting.
    self.useLikelihood = True


  def getAdditionalHeaders(self):
    """Returns a list of strings."""
    return ["raw_score"]


  def initialize(self):

    # Initialize the RDSE with a resolution; calculated from the data min and
    # max, the resolution is specific to the data stream.
    rangePadding = abs(self.inputMax - self.inputMin) * 0.2
    minVal = self.inputMin - rangePadding
    maxVal = (self.inputMax + rangePadding
              if self.inputMin != self.inputMax
              else self.inputMin + 1)
    numBuckets = 130.0
    resolution = max(0.001, (maxVal - minVal) / numBuckets)
    self.valueEncoder = RandomDistributedScalarEncoder(resolution, seed=42)
    self.encodedValue = np.zeros(self.valueEncoder.getWidth(),
                                 dtype=np.uint32)

    # Initialize the timestamp encoder
    self.timestampEncoder = DateEncoder(timeOfDay=(21, 9.49, ))
    self.encodedTimestamp = np.zeros(self.timestampEncoder.getWidth(),
                                     dtype=np.uint32)

    inputWidth = (self.timestampEncoder.getWidth() +
                  self.valueEncoder.getWidth())

    self.sp = SpatialPooler(**{
      "globalInhibition": True,
      "columnDimensions": [2048],
      "inputDimensions": [inputWidth],
      "potentialRadius": inputWidth,
      "numActiveColumnsPerInhArea": 40,
      "seed": 1956,
      "potentialPct": 0.8,
      "boostStrength": 0.0,
      "synPermActiveInc": 0.003,
      "synPermConnected": 0.2,
      "synPermInactiveDec": 0.0005,
    })
    self.spOutput = np.zeros(2048, dtype=np.float32)

    self.tm = TemporalMemory(**{
      "activationThreshold": 20,
      "cellsPerColumn": 32,
      "columnDimensions": (2048,),
      "initialPermanence": 0.24,
      "maxSegmentsPerCell": 128,
      "maxSynapsesPerSegment": 128,
      "minThreshold": 13,
      "maxNewSynapseCount": 31,
      "permanenceDecrement": 0.008,
      "permanenceIncrement": 0.04,
      "seed": 1960,
    })

    if self.useLikelihood:
      learningPeriod = math.floor(self.probationaryPeriod / 2.0)
      self.anomalyLikelihood = anomaly_likelihood.AnomalyLikelihood(
        claLearningPeriod=learningPeriod,
        estimationSamples=self.probationaryPeriod - learningPeriod,
        reestimationPeriod=100
      )


  def handleRecord(self, inputData):
    """Returns a tuple (anomalyScore, rawScore)."""

    # Encode the input data record
    self.valueEncoder.encodeIntoArray(
        inputData["value"], self.encodedValue)
    self.timestampEncoder.encodeIntoArray(
        inputData["timestamp"], self.encodedTimestamp)

    # Run the encoded data through the spatial pooler
    self.sp.compute(np.concatenate((self.encodedTimestamp,
                                    self.encodedValue,)),
                    True, self.spOutput)
#.........這裏部分代碼省略.........
開發者ID:mewbak,項目名稱:nupic.research,代碼行數:101,代碼來源:numentaTM_low_level.py

示例12: FourSquareAnomalyDetector

class FourSquareAnomalyDetector():
    def __init__(self):
        self.lat = ScalarEncoder(name='latitude',  w=3, n=100, minval=-90, maxval=90,
                        periodic=False)
        self.long= ScalarEncoder(name='longitude',  w=3, n=100, minval=-180, maxval=180,
                        periodic=True)
        self.timeenc= DateEncoder(season=0, dayOfWeek=1, weekend=3, timeOfDay=5)
        self.likes = ScalarEncoder(name='likes',  w=3, n=50, minval=0, maxval=100000,
                        periodic=False)
        self.people = ScalarEncoder(name='numpeople',  w=3, n=20, minval=0, maxval=100,
                        periodic=False)
        self.categories = SDRCategoryEncoder(n=87, w=3, categoryList = None,
                             name="cats", verbosity=0)
        self.run()

    def run(self):
        check1=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check2=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check3=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check4=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check5=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check6=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check7=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        check8=Checkin(10,100,datetime.datetime.utcnow(),12,5,"cafe")
        list_of_unencoded_checkins=[check1,check2,check3,check4,check5,check6,check7,check8]
        list_of_encoded_checkins=[]
        for check in list_of_unencoded_checkins:
            print check
            list_of_encoded_checkins.append(self.encode(check))
        print self.LastAnomalyScore(list_of_encoded_checkins)


    def createModel(self):
        return ModelFactory.create(model_params.MODEL_PARAMS)

    def encode(self, checkin):
        print checkin
        latenc=self.lat.encode(checkin.latitude)
        longenc=self.long.encode(checkin.longitude)
        timenc=self.timeenc.encode(checkin.time)
        likeenc=self.likes.encode(checkin.likes)
        peoplenc=self.people.encode(checkin.people)
        for cat in checkin.categories:
            try:
                catenc=numpy.logical_or(catenc,self.categories.encode(cat))
            except:
                catenc=self.categories.encode(cat)
        checkinsdr=numpy.concatenate((latenc,longenc,timenc,likeenc,peoplenc,catenc))
        print checkinsdr
        print type(checkinsdr)
        return checkinsdr

    def LastAnomalyScore(self, checkin_list):
        model = self.createModel()
        model.enableInference({'predictedField': 'checkin'})
        last_anomaly = 0
        for i, record in enumerate(checkin_list, start=1):
            modelInput = {"checkin": record}
            result = model.run(modelInput)
            anomalyScore = result.inferences['anomalyScore']
            last_anomaly = anomalyScore
        return last_anomaly
開發者ID:firetix,項目名稱:BoringFriends,代碼行數:62,代碼來源:AnomalyDetector.py

示例13: testWeekend

  def testWeekend(self):
    '''Test weekend encoder'''
    e = DateEncoder(customDays = (21,["sat","sun","fri"]))
    mon = DateEncoder(customDays = (21,"Monday"))

    e2 = DateEncoder(weekend=(21,1))
    d = datetime.datetime(1988,5,29,20,00)
    self.assertTrue((e.encode(d) == e2.encode(d)).all())
    for _ in range(300):
      d = d+datetime.timedelta(days=1)
      self.assertTrue((e.encode(d) == e2.encode(d)).all())
      print mon.decode(mon.encode(d))
      #Make sure
      if mon.decode(mon.encode(d))[0]["Monday"][0][0][0]==1.0:
        self.assertEqual(d.weekday(), 0)
      else:
        self.assertFalse(d.weekday()==0)
開發者ID:ChiralBehaviors,項目名稱:nupic,代碼行數:17,代碼來源:date_test.py

示例14: DateEncoderTest

class DateEncoderTest(unittest.TestCase):
  """Unit tests for DateEncoder class"""


  def setUp(self):
    # 3 bits for season, 1 bit for day of week, 1 for weekend, 5 for time of
    # day
    # use of forced is not recommended, used here for readability, see scalar.py
    self._e = DateEncoder(season=3, dayOfWeek=1, weekend=1, timeOfDay=5)
    # in the middle of fall, Thursday, not a weekend, afternoon - 4th Nov,
    # 2010, 14:55
    self._d = datetime.datetime(2010, 11, 4, 14, 55)
    self._bits = self._e.encode(self._d)
    # season is aaabbbcccddd (1 bit/month) # TODO should be <<3?
    # should be 000000000111 (centered on month 11 - Nov)
    seasonExpected = [0,0,0,0,0,0,0,0,0,1,1,1]

    # week is MTWTFSS
    # contrary to localtime documentation, Monday = 0 (for python
    #  datetime.datetime.timetuple()
    dayOfWeekExpected = [0,0,0,1,0,0,0]

    # not a weekend, so it should be "False"
    weekendExpected = [1, 0]

    # time of day has radius of 4 hours and w of 5 so each bit = 240/5
    # min = 48min 14:55 is minute 14*60 + 55 = 895; 895/48 = bit 18.6
    # should be 30 bits total (30 * 48 minutes = 24 hours)
    timeOfDayExpected = (
      [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0])
    self._expected = numpy.array(seasonExpected +
                                 dayOfWeekExpected +
                                 weekendExpected +
                                 timeOfDayExpected, dtype=defaultDtype)

  def testDateEncoder(self):
    """creating date encoder instance"""
    self.assertSequenceEqual(
      self._e.getDescription(),
      [("season", 0),
       ("day of week", 12),
       ("weekend", 19), ("time of day", 21)])
    self.assertTrue(numpy.array_equal(self._expected, self._bits))


  def testMissingValues(self):
    """missing values"""
    mvOutput = self._e.encode(SENTINEL_VALUE_FOR_MISSING_DATA)
    self.assertEqual(sum(mvOutput), 0)


  def testDecoding(self):
    """decoding date"""
    decoded = self._e.decode(self._bits)

    (fieldsDict, _) = decoded
    self.assertEqual(len(fieldsDict), 4)

    (ranges, _) = fieldsDict['season']
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [305, 305])

    (ranges, _) = fieldsDict['time of day']
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [14.4, 14.4])

    (ranges, _) = fieldsDict['day of week']
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [3, 3])

    (ranges, _) = fieldsDict['weekend']
    self.assertEqual(len(ranges), 1)
    self.assertSequenceEqual(ranges[0], [0, 0])


  def testTopDownCompute(self):
    """Check topDownCompute"""
    topDown = self._e.topDownCompute(self._bits)
    topDownValues = numpy.array([elem.value for elem in topDown])
    errs = topDownValues - numpy.array([320.25, 3.5, .167, 14.8])
    self.assertAlmostEqual(errs.max(), 0, 4)


  def testBucketIndexSupport(self):
    """Check bucket index support"""
    bucketIndices = self._e.getBucketIndices(self._d)
    topDown = self._e.getBucketInfo(bucketIndices)
    topDownValues = numpy.array([elem.value for elem in topDown])
    errs = topDownValues - numpy.array([320.25, 3.5, .167, 14.8])
    self.assertAlmostEqual(errs.max(), 0, 4)

    encodings = []
    for x in topDown:
      encodings.extend(x.encoding)
    self.assertTrue(numpy.array_equal(encodings, self._expected))


  def testHoliday(self):
    """look at holiday more carefully because of the smooth transition"""
    # use of forced is not recommended, used here for readability, see
#.........這裏部分代碼省略.........
開發者ID:Erichy94,項目名稱:nupic,代碼行數:101,代碼來源:date_test.py

示例15: DistalTimestamps1CellPerColumnDetector

class DistalTimestamps1CellPerColumnDetector(AnomalyDetector):
  """The 'numenta' detector, with the following changes:

  - Use pure Temporal Memory, not the classic TP that uses backtracking.
  - Don't spatial pool the timestamp. Pass it in as distal input.
  - 1 cell per column.
  - Use w=41 in the scalar encoding, rather than w=21, to make up for the
    lost timestamp input to the spatial pooler.
  """
  def __init__(self, *args, **kwargs):
    super(DistalTimestamps1CellPerColumnDetector, self).__init__(*args,
                                                                 **kwargs)

    self.valueEncoder = None
    self.encodedValue = None
    self.timestampEncoder = None
    self.encodedTimestamp = None
    self.activeExternalCells = []
    self.prevActiveExternalCells = []
    self.sp = None
    self.spOutput = None
    self.etm = None
    self.anomalyLikelihood = None


  def getAdditionalHeaders(self):
    """Returns a list of strings."""
    return ["raw_score"]


  def initialize(self):
    rangePadding = abs(self.inputMax - self.inputMin) * 0.2
    minVal = self.inputMin - rangePadding
    maxVal = (self.inputMax + rangePadding
              if self.inputMin != self.inputMax
              else self.inputMin + 1)
    numBuckets = 130.0
    resolution = max(0.001, (maxVal - minVal) / numBuckets)
    self.valueEncoder = RandomDistributedScalarEncoder(resolution,
                                                       w=41,
                                                       seed=42)
    self.encodedValue = np.zeros(self.valueEncoder.getWidth(),
                                 dtype=np.uint32)

    self.timestampEncoder = DateEncoder(timeOfDay=(21,9.49,))
    self.encodedTimestamp = np.zeros(self.timestampEncoder.getWidth(),
                                     dtype=np.uint32)

    inputWidth = self.valueEncoder.getWidth()

    self.sp = SpatialPooler(**{
      "globalInhibition": True,
      "columnDimensions": [2048],
      "inputDimensions": [inputWidth],
      "potentialRadius": inputWidth,
      "numActiveColumnsPerInhArea": 40,
      "seed": 1956,
      "potentialPct": 0.8,
      "boostStrength": 0.0,
      "synPermActiveInc": 0.003,
      "synPermConnected": 0.2,
      "synPermInactiveDec": 0.0005,
    })
    self.spOutput = np.zeros(2048, dtype=np.float32)

    self.etm = ExtendedTemporalMemory(**{
      "activationThreshold": 13,
      "cellsPerColumn": 1,
      "columnDimensions": (2048,),
      "basalInputDimensions": (self.timestampEncoder.getWidth(),),
      "initialPermanence": 0.21,
      "maxSegmentsPerCell": 128,
      "maxSynapsesPerSegment": 32,
      "minThreshold": 10,
      "maxNewSynapseCount": 20,
      "permanenceDecrement": 0.1,
      "permanenceIncrement": 0.1,
      "seed": 1960,
      "checkInputs": False,
    })

    learningPeriod = math.floor(self.probationaryPeriod / 2.0)
    self.anomalyLikelihood = anomaly_likelihood.AnomalyLikelihood(
      claLearningPeriod=learningPeriod,
      estimationSamples=self.probationaryPeriod - learningPeriod,
      reestimationPeriod=100
    )


  def handleRecord(self, inputData):
    """Returns a tuple (anomalyScore, rawScore)."""

    self.valueEncoder.encodeIntoArray(inputData["value"],
                                      self.encodedValue)

    self.timestampEncoder.encodeIntoArray(inputData["timestamp"],
                                          self.encodedTimestamp)
    self.prevActiveExternalCells = self.activeExternalCells
    self.activeExternalCells = self.encodedTimestamp.nonzero()[0]

#.........這裏部分代碼省略.........
開發者ID:mewbak,項目名稱:nupic.research,代碼行數:101,代碼來源:distal_timestamps_1_cell_per_column.py


注:本文中的nupic.encoders.date.DateEncoder類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。