本文整理匯總了Python中nupic.database.ClientJobsDAO.ClientJobsDAO類的典型用法代碼示例。如果您正苦於以下問題:Python ClientJobsDAO類的具體用法?Python ClientJobsDAO怎麽用?Python ClientJobsDAO使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了ClientJobsDAO類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getSwarmModelParams
def getSwarmModelParams(modelID):
"""Retrieve the Engine-level model params from a Swarm model
Args:
modelID - Engine-level model ID of the Swarm model
Returns:
JSON-encoded string containing Model Params
"""
# TODO: the use of opfhelpers.loadExperimentDescriptionScriptFromDir when
# retrieving module params results in a leakage of pf_base_descriptionNN and
# pf_descriptionNN module imports for every call to getSwarmModelParams, so
# the leakage is unlimited when getSwarmModelParams is called by a
# long-running process such as grok-api-server. This issue is presently being
# tracked by the JIRA: https://issues.numenta.org/browse/NPC-225. An
# alternate solution is to execute the guts of this function's logic in a
# seprate process (via multiprocessing module).
cjDAO = ClientJobsDAO.get()
(jobID, description) = cjDAO.modelsGetFields(
modelID,
["jobId", "genDescription"])
(baseDescription,) = cjDAO.jobGetFields(jobID, ["genBaseDescription"])
# Construct a directory with base.py and description.py for loading model
# params, and use opfhelpers to extract model params from those files
descriptionDirectory = tempfile.mkdtemp()
try:
baseDescriptionFilePath = os.path.join(descriptionDirectory, "base.py")
with open(baseDescriptionFilePath, mode="wb") as f:
f.write(baseDescription)
descriptionFilePath = os.path.join(descriptionDirectory, "description.py")
with open(descriptionFilePath, mode="wb") as f:
f.write(description)
expIface = opfhelpers.getExperimentDescriptionInterfaceFromModule(
opfhelpers.loadExperimentDescriptionScriptFromDir(descriptionDirectory))
return json.dumps(
dict(
modelConfig=expIface.getModelDescription(),
inferenceArgs=expIface.getModelControl().get("inferenceArgs", None)))
finally:
shutil.rmtree(descriptionDirectory, ignore_errors=True)
示例2: createAndStartSwarm
def createAndStartSwarm(client, clientInfo="", clientKey="", params="",
minimumWorkers=None, maximumWorkers=None,
alreadyRunning=False):
"""Create and start a swarm job.
Args:
client - A string identifying the calling client. There is a small limit
for the length of the value. See ClientJobsDAO.CLIENT_MAX_LEN.
clientInfo - JSON encoded dict of client specific information.
clientKey - Foreign key. Limited in length, see ClientJobsDAO._initTables.
params - JSON encoded dict of the parameters for the job. This can be
fetched out of the database by the worker processes based on the jobID.
minimumWorkers - The minimum workers to allocate to the swarm. Set to None
to use the default.
maximumWorkers - The maximum workers to allocate to the swarm. Set to None
to use the swarm default. Set to 0 to use the maximum scheduler value.
alreadyRunning - Insert a job record for an already running process. Used
for testing.
"""
if minimumWorkers is None:
minimumWorkers = Configuration.getInt(
"nupic.hypersearch.minWorkersPerSwarm")
if maximumWorkers is None:
maximumWorkers = Configuration.getInt(
"nupic.hypersearch.maxWorkersPerSwarm")
return ClientJobsDAO.get().jobInsert(
client=client,
cmdLine="$HYPERSEARCH",
clientInfo=clientInfo,
clientKey=clientKey,
alreadyRunning=alreadyRunning,
params=params,
minimumWorkers=minimumWorkers,
maximumWorkers=maximumWorkers,
jobType=ClientJobsDAO.JOB_TYPE_HS)
示例3: main
#.........這裏部分代碼省略.........
parser.add_option(
"--modelID",
action="store",
type="str",
default=None,
help=(
"Tell worker to re-run this model ID. When specified, jobID " "must also be specified [default: %default]."
),
)
parser.add_option(
"--workerID",
action="store",
type="str",
default=None,
help=(
"workerID of the scheduler's SlotAgent (GenericWorker) that "
"hosts this SpecializedWorker [default: %default]."
),
)
parser.add_option(
"--params",
action="store",
default=None,
help="Create and execute a new hypersearch request using this JSON "
"format params string. This is helpful for unit tests and debugging. "
"When specified jobID must NOT be specified. [default: %default].",
)
parser.add_option(
"--clearModels",
action="store_true",
default=False,
help="clear out the models table before starting [default: %default].",
)
parser.add_option(
"--resetJobStatus",
action="store_true",
default=False,
help="Reset the job status before starting [default: %default].",
)
parser.add_option(
"--logLevel",
action="store",
type="int",
default=None,
help="override default log level. Pass in an integer value that "
"represents the desired logging level (10=logging.DEBUG, "
"20=logging.INFO, etc.) [default: %default].",
)
# Evaluate command line arguments
(options, args) = parser.parse_args(argv[1:])
if len(args) != 0:
raise RuntimeError("Expected no command line arguments, but got: %s" % (args))
if options.jobID and options.params:
raise RuntimeError("--jobID and --params can not be used at the same time")
if options.jobID is None and options.params is None:
raise RuntimeError("Either --jobID or --params must be specified.")
initLogging(verbose=True)
# Instantiate the HypersearchWorker and run it
hst = HypersearchWorker(options, argv[1:])
# Normal use. This is one of among a number of workers. If we encounter
# an exception at the outer loop here, we fail the entire job.
if options.params is None:
try:
jobID = hst.run()
except Exception, e:
jobID = options.jobID
msg = StringIO.StringIO()
print >> msg, "%s: Exception occurred in Hypersearch Worker: %r" % (ErrorCodes.hypersearchLogicErr, e)
traceback.print_exc(None, msg)
completionReason = ClientJobsDAO.CMPL_REASON_ERROR
completionMsg = msg.getvalue()
hst.logger.error(completionMsg)
# If no other worker already marked the job as failed, do so now.
jobsDAO = ClientJobsDAO.get()
workerCmpReason = jobsDAO.jobGetFields(options.jobID, ["workerCompletionReason"])[0]
if workerCmpReason == ClientJobsDAO.CMPL_REASON_SUCCESS:
jobsDAO.jobSetFields(
options.jobID,
fields=dict(
cancel=True,
workerCompletionReason=ClientJobsDAO.CMPL_REASON_ERROR,
workerCompletionMsg=completionMsg,
),
useConnectionID=False,
ignoreUnchanged=True,
)
示例4: run
def run(self):
""" Run this worker.
Parameters:
----------------------------------------------------------------------
retval: jobID of the job we ran. This is used by unit test code
when calling this working using the --params command
line option (which tells this worker to insert the job
itself).
"""
# Easier access to options
options = self._options
# ---------------------------------------------------------------------
# Connect to the jobs database
self.logger.info("Connecting to the jobs database")
cjDAO = ClientJobsDAO.get()
# Get our worker ID
self._workerID = cjDAO.getConnectionID()
if options.clearModels:
cjDAO.modelsClearAll()
# -------------------------------------------------------------------------
# if params were specified on the command line, insert a new job using
# them.
if options.params is not None:
options.jobID = cjDAO.jobInsert(
client="hwTest",
cmdLine="echo 'test mode'",
params=options.params,
alreadyRunning=True,
minimumWorkers=1,
maximumWorkers=1,
jobType=cjDAO.JOB_TYPE_HS,
)
if options.workerID is not None:
wID = options.workerID
else:
wID = self._workerID
buildID = Configuration.get("nupic.software.buildNumber", "N/A")
logPrefix = "<BUILDID=%s, WORKER=HW, WRKID=%s, JOBID=%s> " % (buildID, wID, options.jobID)
ExtendedLogger.setLogPrefix(logPrefix)
# ---------------------------------------------------------------------
# Get the search parameters
# If asked to reset the job status, do that now
if options.resetJobStatus:
cjDAO.jobSetFields(
options.jobID,
fields={
"workerCompletionReason": ClientJobsDAO.CMPL_REASON_SUCCESS,
"cancel": False,
#'engWorkerState': None
},
useConnectionID=False,
ignoreUnchanged=True,
)
jobInfo = cjDAO.jobInfo(options.jobID)
self.logger.info("Job info retrieved: %s" % (str(clippedObj(jobInfo))))
# ---------------------------------------------------------------------
# Instantiate the Hypersearch object, which will handle the logic of
# which models to create when we need more to evaluate.
jobParams = json.loads(jobInfo.params)
# Validate job params
jsonSchemaPath = os.path.join(os.path.dirname(__file__), "jsonschema", "jobParamsSchema.json")
validate(jobParams, schemaPath=jsonSchemaPath)
hsVersion = jobParams.get("hsVersion", None)
if hsVersion == "v2":
self._hs = HypersearchV2(
searchParams=jobParams,
workerID=self._workerID,
cjDAO=cjDAO,
jobID=options.jobID,
logLevel=options.logLevel,
)
else:
raise RuntimeError("Invalid Hypersearch implementation (%s) specified" % (hsVersion))
# =====================================================================
# The main loop.
try:
exit = False
numModelsTotal = 0
print >>sys.stderr, "reporter:status:Evaluating first model..."
while not exit:
# ------------------------------------------------------------------
# Choose a model to evaluate
batchSize = 10 # How many to try at a time.
modelIDToRun = None
while modelIDToRun is None:
if options.modelID is None:
# -----------------------------------------------------------------
#.........這裏部分代碼省略.........
示例5: run
def run(self):
""" Run this worker.
Parameters:
----------------------------------------------------------------------
retval: jobID of the job we ran. This is used by unit test code
when calling this working using the --params command
line option (which tells this worker to insert the job
itself).
"""
# Easier access to options
options = self._options
# ---------------------------------------------------------------------
# Connect to the jobs database
self.logger.info("Connecting to the jobs database")
cjDAO = ClientJobsDAO.get()
# Get our worker ID
self._workerID = cjDAO.getConnectionID()
# -------------------------------------------------------------------------
# if params were specified on the command line, insert a new job using
# them.
if options.params is not None:
options.jobID = cjDAO.jobInsert(client='dummy',
cmdLine="python -m nupic.swarming.DummyWorker --jobID={JOBID}",
params=options.params)
# ---------------------------------------------------------------------
# Get the search parameters
jobInfo = cjDAO.jobInfo(options.jobID)
self.logger.info("Job info retrieved: %s" % (str(jobInfo)))
if options.workerID is not None:
wID = options.workerID
else:
wID = self._workerID
buildID = Configuration.get('nupic.software.buildNumber', 'N/A')
logPrefix = '<BUILDID=%s, WORKER=DW, WRKID=%s, JOBID=%s> ' % \
(buildID, wID, options.jobID)
ExtendedLogger.setLogPrefix(logPrefix)
# ---------------------------------------------------------------------
# Instantiate the Dummy object, which will handle the logic of
# which models to create when we need more to evaluate.
jobParams = json.loads(jobInfo.params)
self.logger.info("Job Params: %s" % jobInfo.params)
# prints the current status
print >>sys.stderr, "reporter:status:Running dummy worker on job:%d" % \
(options.jobID)
self.logger.info("Start of the dummy worker")
startTime = time.time()
runTime = jobParams['runTime']
jobLoad = jobParams['load']
crashJob = jobParams['crash']
try:
while True:
if runTime != -1 and time.time() > startTime + runTime:
break
self.logger.info("In dummy worker")
if jobLoad == 'heavy':
# Computationally intensive process
# Takes 0.8 sec approximately
numIterations = 30000
for i in range(numIterations):
d = numpy.random.rand(1000).sum()
else:
time.sleep(0.8)
except:
self.logger.exception("DummyWorker exception;")
if crashJob:
self.logger.info("Crash of the dummy worker")
print >>sys.stderr, "reporter:status:Crashed dummy worker..."
raise RuntimeError("Simulating job crash.")
else:
self.logger.info("End of the dummy worker")
print >>sys.stderr, "reporter:status:Finished dummy worker..."
#import auxilary
#auxilary.do_something()
return options.jobID