當前位置: 首頁>>代碼示例>>Python>>正文


Python AnomalyLikelihood.computeLogLikelihood方法代碼示例

本文整理匯總了Python中nupic.algorithms.anomaly_likelihood.AnomalyLikelihood.computeLogLikelihood方法的典型用法代碼示例。如果您正苦於以下問題:Python AnomalyLikelihood.computeLogLikelihood方法的具體用法?Python AnomalyLikelihood.computeLogLikelihood怎麽用?Python AnomalyLikelihood.computeLogLikelihood使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nupic.algorithms.anomaly_likelihood.AnomalyLikelihood的用法示例。


在下文中一共展示了AnomalyLikelihood.computeLogLikelihood方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: runAvogadroAnomaly

# 需要導入模塊: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 別名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import computeLogLikelihood [as 別名]
def runAvogadroAnomaly(metric, options):
  """
  Create a new HTM Model, fetch the data from the local DB, process it in NuPIC,
  and save the results to a new CSV output file.

  :param metric: AvogadroAgent metric class
  :param options: CLI Options
  """
  model = createModel(metric)
  model.enableInference({"predictedField": metric.name})

  fetched = metric.fetch(prefix=options.prefix, start=None)

  resultFile = open(os.path.join(options.prefix, metric.name + "-result.csv"),
                    "wb")
  csvWriter = csv.writer(resultFile)
  csvWriter.writerow(["timestamp", metric.name, "raw_anomaly_score",
                      "anomaly_likelihood", "color"])

  headers = ("timestamp", metric.name)

  anomalyLikelihood = AnomalyLikelihood()

  for (ts, value) in fetched:
    try:
      value = float(value)
    except (ValueError, TypeError):
      continue

    if not math.isnan(value):
      modelInput = dict(zip(headers, (ts, value)))
      modelInput[metric.name] = float(value)
      modelInput["timestamp"] = datetime.datetime.fromtimestamp(
        float(modelInput["timestamp"]))
      result = model.run(modelInput)
      anomalyScore = result.inferences["anomalyScore"]

      likelihood = anomalyLikelihood.anomalyProbability(
        modelInput[metric.name], anomalyScore, modelInput["timestamp"])
      logLikelihood = anomalyLikelihood.computeLogLikelihood(likelihood)

      if logLikelihood > .5:
        color = "red"
      elif logLikelihood > .4 and logLikelihood <= .5:
        color = "yellow"
      else:
        color = "green"

      csvWriter.writerow([modelInput["timestamp"], float(value),
                          anomalyScore, logLikelihood, color])

  else:
    resultFile.flush()
開發者ID:AnthonyAaronHughWong,項目名稱:nupic.rogue,代碼行數:55,代碼來源:nupic_forwarder.py

示例2: _ModelRunner

# 需要導入模塊: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 別名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import computeLogLikelihood [as 別名]

#.........這裏部分代碼省略.........
    model.enableInference(modelSpec["inferenceArgs"])

    return model


  @staticmethod
  def _createCsvReader(fileObj):
    # We'll be operating on csvs with arbitrarily long fields
    csv.field_size_limit(2**27)

    # Make sure readline() works on windows too
    os.linesep = "\n"

    return csv.reader(fileObj, dialect="excel")


  @classmethod
  def _emitOutputMessage(cls, dataRow, anomalyProbability):
    """Emit output message to stdout

    :param list dataRow: the two-tuple data row on which anomalyProbability was
      computed, whose first element is datetime timestamp and second element is
      the float scalar value
    :param float anomalyProbability: computed anomaly probability value
    """

    message = "%s\n" % (json.dumps([dataRow[0].isoformat(), dataRow[1], anomalyProbability]),)

    sys.stdout.write(message)
    sys.stdout.flush()


  def _computeAnomalyProbability(self, fields):
    """ Compute anomaly log likelihood score

    :param tuple fields: Two-tuple input metric data row
      (<datetime-timestamp>, <float-scalar>)

    :returns: Log-scaled anomaly probability
    :rtype: float
    """
    # Generate raw anomaly score
    inputRecord = self._modelRecordEncoder.encode(fields)
    rawAnomalyScore = self._model.run(inputRecord).inferences["anomalyScore"]

    # Generate anomaly likelihood score
    anomalyProbability = self._anomalyLikelihood.anomalyProbability(
      value=fields[1],
      anomalyScore=rawAnomalyScore,
      timestamp=fields[0])

    return self._anomalyLikelihood.computeLogLikelihood(anomalyProbability)


  def run(self):
    """ Run the model: ingest and process the input metric data and emit output
    messages containing anomaly scores
    """

    numRowsToSkip = self._inputSpec["rowOffset"]
    datetimeFormat = self._inputSpec["datetimeFormat"]
    inputRowTimestampIndex = self._inputSpec["timestampIndex"]
    inputRowValueIndex = self._inputSpec["valueIndex"]

    g_log.info("Processing model=%s", self._modelId)

    for inputRow in self._csvReader:
      g_log.debug("Got inputRow=%r", inputRow)

      if numRowsToSkip > 0:
        numRowsToSkip -= 1
        g_log.debug("Skipping header row %s; %s rows left to skip",
                    inputRow, numRowsToSkip)
        continue

      # Extract timestamp and value
      # NOTE: the order must match the `inputFields` that we passed to the
      # Aggregator constructor
      fields = [
        date_time_utils.parseDatetime(inputRow[inputRowTimestampIndex],
                                      datetimeFormat),
        float(inputRow[inputRowValueIndex])
      ]

      # Aggregate
      aggRow, _ = self._aggregator.next(fields, None)
      g_log.debug("Aggregator returned %s for %s", aggRow, fields)
      if aggRow is not None:
        self._emitOutputMessage(
          dataRow=aggRow,
          anomalyProbability=self._computeAnomalyProbability(aggRow))


    # Reap remaining data from aggregator
    aggRow, _ = self._aggregator.next(None, curInputBookmark=None)
    g_log.debug("Aggregator reaped %s in final call", aggRow)
    if aggRow is not None:
      self._emitOutputMessage(
        dataRow=aggRow,
        anomalyProbability=self._computeAnomalyProbability(aggRow))
開發者ID:bnmgit,項目名稱:numenta-apps,代碼行數:104,代碼來源:model_runner_2.py

示例3: _ModelRunner

# 需要導入模塊: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 別名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import computeLogLikelihood [as 別名]

#.........這裏部分代碼省略.........
    self._modelId = modelId

    # NOTE: ModelRecordEncoder is implemented in the pull request
    # https://github.com/numenta/nupic/pull/2432 that is not yet in master.
    self._modelRecordEncoder = record_stream.ModelRecordEncoder(
      fields=self._INPUT_RECORD_SCHEMA)

    self._model = self._createModel(stats=stats)

    self._anomalyLikelihood = AnomalyLikelihood()


  @classmethod
  def _createModel(cls, stats):
    """Instantiate and configure an OPF model

    :param dict stats: Metric data stats per stats_schema.json in the
      unicorn_backend package.
    :returns: OPF Model instance
    """
    # Generate swarm params
    swarmParams = getScalarMetricWithTimeOfDayAnomalyParams(
      metricData=[0],
      minVal=stats["min"],
      maxVal=stats["max"],
      minResolution=stats.get("minResolution"))

    model = ModelFactory.create(modelConfig=swarmParams["modelConfig"])
    model.enableLearning()
    model.enableInference(swarmParams["inferenceArgs"])

    return model


  @classmethod
  def _readInputMessages(cls):
    """Create a generator that waits for and yields input messages from
    stdin

    yields two-tuple (<timestamp>, <scalar-value>), where <timestamp> is the
    `datetime.datetime` timestamp of the metric data sample and <scalar-value>
    is the floating point value of the metric data sample.
    """
    while True:
      message = sys.stdin.readline()

      if message:
        timestamp, scalarValue = json.loads(message)
        yield (datetime.utcfromtimestamp(timestamp), scalarValue)
      else:
        # Front End closed the pipe (or died)
        break


  @classmethod
  def _emitOutputMessage(cls, rowIndex, anomalyProbability):
    """Emit output message to stdout

    :param int rowIndex: 0-based index of corresponding input sample
    :param float anomalyProbability: computed anomaly probability value
    """
    message = "%s\n" % (json.dumps([rowIndex, anomalyProbability]),)

    sys.stdout.write(message)
    sys.stdout.flush()


  def _computeAnomalyProbability(self, inputRow):
    """ Compute anomaly log likelihood score

    :param tuple inputRow: Two-tuple input metric data row
      (<datetime-timestamp>, <float-scalar>)

    :returns: Log-scaled anomaly probability
    :rtype: float
    """
    # Generate raw anomaly score
    inputRecord = self._modelRecordEncoder.encode(inputRow)
    rawAnomalyScore = self._model.run(inputRecord).inferences["anomalyScore"]

    # Generate anomaly likelihood score
    anomalyProbability = self._anomalyLikelihood.anomalyProbability(
      value=inputRow[1],
      anomalyScore=rawAnomalyScore,
      timestamp=inputRow[0])

    return self._anomalyLikelihood.computeLogLikelihood(anomalyProbability)


  def run(self):
    """ Run the model: ingest and process the input metric data and emit output
    messages containing anomaly scores
    """
    g_log.info("Processing model=%s", self._modelId)

    for rowIndex, inputRow in enumerate(self._readInputMessages()):
      anomalyProbability = self._computeAnomalyProbability(inputRow)

      self._emitOutputMessage(rowIndex=rowIndex,
                              anomalyProbability=anomalyProbability)
開發者ID:darian19,項目名稱:numenta-apps,代碼行數:104,代碼來源:model_runner.py

示例4: runAnomaly

# 需要導入模塊: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 別名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import computeLogLikelihood [as 別名]
def runAnomaly(options):
  """
  Create and run a CLA Model on the given dataset (based on the hotgym anomaly
  client in NuPIC).
  """
  # Load the model params JSON
  with open("model_params.json") as fp:
    modelParams = json.load(fp)

  # Update the resolution value for the encoder
  sensorParams = modelParams['modelParams']['sensorParams']
  numBuckets = modelParams['modelParams']['sensorParams']['encoders']['value'].pop('numBuckets')
  resolution = options.resolution
  if resolution is None:
    resolution = max(0.001,
                     (options.max - options.min) / numBuckets)
  print "Using resolution value: {0}".format(resolution)
  sensorParams['encoders']['value']['resolution'] = resolution

  model = ModelFactory.create(modelParams)
  model.enableInference({'predictedField': 'value'})
  with open (options.inputFile) as fin:
    
    # Open file and setup headers
    # Here we write the log likelihood value as the 'anomaly score'
    # The actual CLA outputs are labeled 'raw anomaly score'
    reader = csv.reader(fin)
    csvWriter = csv.writer(open(options.outputFile,"wb"))
    csvWriter.writerow(["timestamp", "value",
                        "_raw_score", "likelihood_score", "log_likelihood_score"])
    headers = reader.next()
    
    # The anomaly likelihood object
    anomalyLikelihood = AnomalyLikelihood()
    
    # Iterate through each record in the CSV file
    print "Starting processing at",datetime.datetime.now()
    for i, record in enumerate(reader, start=1):
      
      # Convert input data to a dict so we can pass it into the model
      inputData = dict(zip(headers, record))
      inputData["value"] = float(inputData["value"])
      inputData["dttm"] = dateutil.parser.parse(inputData["dttm"])
      #inputData["dttm"] = datetime.datetime.now()
      
      # Send it to the CLA and get back the raw anomaly score
      result = model.run(inputData)
      anomalyScore = result.inferences['anomalyScore']
      
      # Compute the Anomaly Likelihood
      likelihood = anomalyLikelihood.anomalyProbability(
        inputData["value"], anomalyScore, inputData["dttm"])
      logLikelihood = anomalyLikelihood.computeLogLikelihood(likelihood)
      if likelihood > 0.9999:
        print "Anomaly detected:",inputData['dttm'],inputData['value'],likelihood

      # Write results to the output CSV file
      csvWriter.writerow([inputData["dttm"], inputData["value"],
                          anomalyScore, likelihood, logLikelihood])

      # Progress report
      if (i%1000) == 0: print i,"records processed"

  print "Completed processing",i,"records at",datetime.datetime.now()
  print "Anomaly scores for",options.inputFile,
  print "have been written to",options.outputFile
開發者ID:08s011003,項目名稱:nupic.subutai,代碼行數:68,代碼來源:run_anomaly.py

示例5: str

# 需要導入模塊: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 別名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import computeLogLikelihood [as 別名]
      anomalyScore, likelihood, logLikelihood = 'None', 'None', 'None'
      pred_result = shifter.shift(result)
      if result.inferences["multiStepBestPredictions"][1]:
        prediction = result.inferences["multiStepBestPredictions"][1]
        print prediction
      else:
        prediction = 'None'


    if not PREDICT or prediction == 'None':
      # Anomaly-Stats: 
      anomalyScore = result.inferences["anomalyScore"]
      AnomalyScores.append(anomalyScore)
      # By default 0.5 for the first 600 iterations! TODO: Still not quite sure if that's alright...
      likelihood = anomalyLikelihood.anomalyProbability(event[0] + numpy.array([event[1]]), anomalyScore, modelInput["timestamp"])
      logLikelihood = anomalyLikelihood.computeLogLikelihood(likelihood)
      LikelihoodScores.append([modelInput["timestamp"], modelInput["event"], likelihood])
      prediction = 'None'


    # NOTE: change mag to scalar -more general! -Typecasting for DB
    data = {"eventType": str(event.type),
            "lat": float(event.latitude),
            "lng": float(event.longitude),
            "depth": float(event.depth),
            "scalar": float(event.mag),
            "timestamp": str(event.time),
            "AnomalyScore": float(anomalyScore),
            "Anomaly_mean": (float(numpy.mean(AnomalyScores)), WINDOWSIZE),
            "AnomalyLikelihood": float(likelihood),
            "logLikelihood": float(logLikelihood),
開發者ID:neuroidss,項目名稱:nostradamIQ,代碼行數:33,代碼來源:DEMOrun.py


注:本文中的nupic.algorithms.anomaly_likelihood.AnomalyLikelihood.computeLogLikelihood方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。