當前位置: 首頁>>代碼示例>>Python>>正文


Python punkt.PunktLanguageVars類代碼示例

本文整理匯總了Python中nltk.tokenize.punkt.PunktLanguageVars的典型用法代碼示例。如果您正苦於以下問題:Python PunktLanguageVars類的具體用法?Python PunktLanguageVars怎麽用?Python PunktLanguageVars使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了PunktLanguageVars類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tokenize

 def tokenize(self, string):
     """Tokenize incoming string."""
     punkt = PunktLanguageVars()
     generic_tokens = punkt.word_tokenize(string)
     # Rewrite as an if-else block for exceptions rather than separate list comprehensions
     generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'nec' else ['c', 'ne'])] # Handle 'nec' as a special case.
     generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'sodes' else ['si', 'audes'])] # Handle 'sodes' as a special case.
     generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'sultis' else ['si', 'vultis'])] # Handle 'sultis' as a special case.        
     specific_tokens = []
     for generic_token in generic_tokens:
         is_enclitic = False
         if generic_token not in self.exceptions:
             for enclitic in self.enclitics:
                 if generic_token.endswith(enclitic):
                     if enclitic == 'cum':
                         if generic_token in self.inclusions:
                             specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
                         else:
                             specific_tokens += [generic_token]                                                                         
                     elif enclitic == 'st':
                         if generic_token.endswith('ust'):
                             specific_tokens += [generic_token[:-len(enclitic)+1]] + ['est']
                         else:
                             # Does not handle 'similist', 'qualist', etc. correctly
                             specific_tokens += [generic_token[:-len(enclitic)]] + ['est']
                     else:
                         specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
                     is_enclitic = True
                     break
         if not is_enclitic:
             specific_tokens.append(generic_token)
     return specific_tokens
開發者ID:vipul-sharma20,項目名稱:cltk,代碼行數:32,代碼來源:word.py

示例2: nltk_tokenize_words

def nltk_tokenize_words(string, attached_period=False, language=None):
    """Wrap NLTK's tokenizer PunktLanguageVars(), but make final period
    its own token.
    >>> nltk_punkt("Sentence 1. Sentence 2.")
    >>> ['Sentence', 'one', '.', 'Sentence', 'two', '.']

    Optionally keep the NLTK's output:
    >>> nltk_punkt("Sentence 1. Sentence 2.", attached_period=True)
    >>> ['Sentence', 'one.', 'Sentence', 'two.']

    TODO: Run some tests to determine whether there is a large penalty for
    re-calling PunktLanguageVars() for each use of this function. If so, this
    will need to become a class, perhaps inheriting from the PunktLanguageVars
    object. Maybe integrate with WordTokenizer.
    """
    assert isinstance(string, str), "Incoming string must be type str."
    if language=='sanskrit': 
        periods = ['.', 'ред','рее']
    else:
        periods = ['.']
    punkt = PunktLanguageVars()
    tokens = punkt.word_tokenize(string)
    if attached_period:
        return tokens
    new_tokens = []
    for word in tokens:
        for char in periods:
            if word.endswith(char):
                new_tokens.append(word[:-1])
                new_tokens.append(char)
                break
        else:
            new_tokens.append(word)
    return new_tokens
開發者ID:Sarthak30,項目名稱:cltk,代碼行數:34,代碼來源:word.py

示例3: tokenize

 def tokenize(self, string):
     """Tokenize incoming string."""
     #punkt = WhitespaceTokenizer()
     punkt= PunktLanguageVars()
     generic_tokens = punkt.word_tokenize(string)
     generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'nec' else ['c', 'ne'])] # Handle 'nec' as a special case.
     specific_tokens = []
     for generic_token in generic_tokens:
         is_enclitic = False
         if generic_token not in self.exceptions:
             for enclitic in self.enclitics:
                 if generic_token.endswith(enclitic):
                     if enclitic == 'cum':
                         if generic_token in self.inclusions:
                             specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
                         else:
                             specific_tokens += [generic_token]                                                                         
                     elif enclitic == 'st':
                         if generic_token.endswith('ust'):
                             specific_tokens += [generic_token[:-len(enclitic)+1]] + ['est']
                         else:
                             # Does not handle 'similist', 'qualist', etc. correctly
                             specific_tokens += [generic_token[:-len(enclitic)]] + ['est']
                     else:
                         specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
                     is_enclitic = True
                     break
         if not is_enclitic:
             specific_tokens.append(generic_token)
     #return iter(specific_tokens) #change this one into an iterator.
     startPoint=0 #this is to accumulate the start point.
     for item in specific_tokens:
         itemLength=len(item)
         yield item, startPoint, startPoint+itemLength
         startPoint=startPoint+itemLength+1
開發者ID:oudalab,項目名稱:sqlite-fts-python,代碼行數:35,代碼來源:pdb_test_oulatin.py

示例4: tokenize

 def tokenize(self, string):
     """Tokenize incoming string."""
     punkt = PunktLanguageVars()
     generic_tokens = punkt.word_tokenize(string)
     generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'nec' else ['c', 'ne'])] # Handle 'nec' as a special case.
     specific_tokens = []
     for generic_token in generic_tokens:
         is_enclitic = False
         if generic_token not in self.exceptions:
             for enclitic in self.enclitics:
                 if generic_token.endswith(enclitic):
                     if enclitic == 'mst':
                         specific_tokens += [generic_token[:-len(enclitic)+1]] + ['e'+ generic_token[-len(enclitic)+1:]]
                     elif enclitic == 'cum':
                         if generic_token in self.inclusions:
                             specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
                         else:
                             specific_tokens += [generic_token]                                                     
                     else:
                         specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
                     is_enclitic = True
                     break
         if not is_enclitic:
             specific_tokens.append(generic_token)
     return specific_tokens
開發者ID:ManviG,項目名稱:cltk,代碼行數:25,代碼來源:word.py

示例5: _tokenize

    def _tokenize(self, text):
        """
        Use NLTK's standard tokenizer, rm punctuation.
        :param text: pre-processed text
        :return: tokenized text
        :rtype : list
        """
        sentence_tokenizer = TokenizeSentence('latin')
        sentences = sentence_tokenizer.tokenize_sentences(text.lower())

        sent_words = []
        punkt = PunktLanguageVars()
        for sentence in sentences:
            words = punkt.word_tokenize(sentence)

            assert isinstance(words, list)
            words_new = []
            for word in words:
                if word not in self.punctuation or self.abbreviations or self.numbers or self.abbreviations:  # pylint: disable=line-too-long
                    words_new.append(word)

            # rm all numbers here with: re.compose(r'[09]')
            sent_words.append(words_new)

        return sent_words
開發者ID:Akirato,項目名稱:cltk,代碼行數:25,代碼來源:scanner.py

示例6: tokenize

def tokenize(doc):
    '''
    INPUT: Document
    OUTPUT: Tokenized and stemmed list of words from the document 
    '''
    plv      = PunktLanguageVars()
    snowball = SnowballStemmer('english')
    return [snowball.stem(word) for word in plv.word_tokenize(doc.lower())]
開發者ID:jonoleson,項目名稱:PriceMyRental,代碼行數:8,代碼來源:featurize.py

示例7: tokenize

def tokenize(desc):
	'''
	INPUT: List of cleaned descriptions
	OUTPUT: Tokenized and stemmed list of words from the descriptions 
	'''
	plv = PunktLanguageVars()
	snowball = SnowballStemmer('english')
	return [snowball.stem(word) for word in plv.word_tokenize(desc.lower())]
開發者ID:nhu2000,項目名稱:PriceHome,代碼行數:8,代碼來源:featurize.py

示例8: tag_ner

def tag_ner(lang, input_text, output_type=list):
    """Run NER for chosen language.
    """

    _check_latest_data(lang)

    assert lang in NER_DICT.keys(), \
        'Invalid language. Choose from: {}'.format(', '.join(NER_DICT.keys()))
    types = [str, list]
    assert type(input_text) in types, 'Input must be: {}.'.format(', '.join(types))
    assert output_type in types, 'Output must be a {}.'.format(', '.join(types))

    if type(input_text) == str:
        punkt = PunktLanguageVars()
        tokens = punkt.word_tokenize(input_text)
        new_tokens = []
        for word in tokens:
            if word.endswith('.'):
                new_tokens.append(word[:-1])
                new_tokens.append('.')
            else:
                new_tokens.append(word)
        input_text = new_tokens

    ner_file_path = os.path.expanduser(NER_DICT[lang])
    with open(ner_file_path) as file_open:
        ner_str = file_open.read()
    ner_list = ner_str.split('\n')

    ner_tuple_list = []
    for count, word_token in enumerate(input_text):
        match = False
        for ner_word in ner_list:
            # the replacer slows things down, but is necessary
            if word_token == ner_word:
                ner_tuple = (word_token, 'Entity')
                ner_tuple_list.append(ner_tuple)
                match = True
                break
        if not match:
            ner_tuple_list.append((word_token,))

    if output_type is str:
        string = ''
        for tup in ner_tuple_list:
            start_space = ' '
            final_space = ''
            # this is some mediocre string reconstitution
            # maybe not worth the effort
            if tup[0] in [',', '.', ';', ':', '?', '!']:
                start_space = ''
            if len(tup) == 2:
                string += start_space + tup[0] + '/' + tup[1] + final_space
            else:
                string += start_space + tup[0] + final_space
        return string

    return ner_tuple_list
開發者ID:cltk,項目名稱:cltk,代碼行數:58,代碼來源:ner.py

示例9: test_latin_stopwords

 def test_latin_stopwords(self):
     """Test filtering Latin stopwords."""
     sentence = 'Quo usque tandem abutere, Catilina, patientia nostra?'
     lowered = sentence.lower()
     punkt = PunktLanguageVars()
     tokens = punkt.word_tokenize(lowered)
     no_stops = [w for w in tokens if w not in LATIN_STOPS]
     target_list = ['usque', 'tandem', 'abutere', ',', 'catilina', ',',
                    'patientia', 'nostra', '?']
     self.assertEqual(no_stops, target_list)
開發者ID:cltk,項目名稱:cltk,代碼行數:10,代碼來源:test_stop.py

示例10: test_french_stopwords

 def test_french_stopwords(self):
     ##test filtering French stopwords
     sentence = "En pensé ai e en talant que d ’ Yonec vus die avant dunt il fu nez, e de sun pere cum il vint primes a sa mere ."
     lowered = sentence.lower()
     punkt = PunktLanguageVars()
     tokens = punkt.word_tokenize(lowered)
     no_stops = [w for w in tokens if w not in FRENCH_STOPS]
     target_list = ['pensé', 'talant', 'd', '’', 'yonec', 'die', 'avant', 'dunt', 'nez', ',', 'pere', 'cum', 'primes',
                    'mere','.']
     self.assertEqual(no_stops, target_list)
開發者ID:cltk,項目名稱:cltk,代碼行數:10,代碼來源:test_stop.py

示例11: test_old_norse_stopwords

 def test_old_norse_stopwords(self):
     """
     Test filtering Old Norse stopwords
     Sentence extracted from Eiríks saga rauða (http://www.heimskringla.no/wiki/Eir%C3%ADks_saga_rau%C3%B0a)
     """
     sentence = 'Þat var einn morgin, er þeir Karlsefni sá fyrir ofan rjóðrit flekk nökkurn, sem glitraði við þeim'
     lowered = sentence.lower()
     punkt = PunktLanguageVars()
     tokens = punkt.word_tokenize(lowered)
     no_stops = [w for w in tokens if w not in OLD_NORSE_STOPS]
     target_list = ['var', 'einn', 'morgin', ',', 'karlsefni', 'rjóðrit', 'flekk', 'nökkurn', ',', 'glitraði']
     self.assertEqual(no_stops, target_list)
開發者ID:cltk,項目名稱:cltk,代碼行數:12,代碼來源:test_stop.py

示例12: test_greek_stopwords

 def test_greek_stopwords(self):
     """Test filtering Greek stopwords."""
     sentence = 'Ἅρπαγος δὲ καταστρεψάμενος Ἰωνίην ἐποιέετο στρατηίην \
     ἐπὶ Κᾶρας καὶ Καυνίους καὶ Λυκίους, ἅμα ἀγόμενος καὶ Ἴωνας καὶ \
     Αἰολέας.'
     lowered = sentence.lower()
     punkt = PunktLanguageVars()
     tokens = punkt.word_tokenize(lowered)
     no_stops = [w for w in tokens if w not in GREEK_STOPS]
     target_list = ['ἅρπαγος', 'καταστρεψάμενος', 'ἰωνίην', 'ἐποιέετο',
                    'στρατηίην', 'κᾶρας', 'καυνίους', 'λυκίους', ',',
                    'ἅμα', 'ἀγόμενος', 'ἴωνας', 'αἰολέας.']
     self.assertEqual(no_stops, target_list)
開發者ID:cltk,項目名稱:cltk,代碼行數:13,代碼來源:test_stop.py

示例13: lemmatize

    def lemmatize(self, input_text, return_raw=False, return_string=False):
        """Take incoming string or list of tokens. Lookup done against a
        key-value list of lemmata-headword. If a string, tokenize with
        ``PunktLanguageVars()``. If a final period appears on a token, remove
        it, then re-add once replacement done.
        TODO: rm check for final period, change PunktLanguageVars() to nltk_tokenize_words()
        """
        assert type(input_text) in [list, str], \
            logger.error('Input must be a list or string.')
        if type(input_text) is str:
            punkt = PunktLanguageVars()
            tokens = punkt.word_tokenize(input_text)
        else:
            tokens = input_text

        lemmatized_tokens = []
        for token in tokens:
            # check for final period
            final_period = False
            if token[-1] == '.':
                final_period = True
                token = token[:-1]

            # look for token in lemma dict keys
            if token in self.lemmata.keys():
                headword = self.lemmata[token.lower()]

                # re-add final period if rm'd
                if final_period:
                    headword += '.'

                # append to return list
                if not return_raw:
                    lemmatized_tokens.append(headword)
                else:
                    lemmatized_tokens.append(token + '/' + headword)
            # if token not found in lemma-headword list
            else:
                # re-add final period if rm'd
                if final_period:
                    token += '.'

                if not return_raw:
                    lemmatized_tokens.append(token)
                else:
                    lemmatized_tokens.append(token + '/' + token)
        if not return_string:
            return lemmatized_tokens
        elif return_string:
            return ' '.join(lemmatized_tokens)
開發者ID:Akirato,項目名稱:cltk,代碼行數:50,代碼來源:lemma.py

示例14: test_akkadian_stopwords

 def test_akkadian_stopwords(self):
     """
     Test filtering Akkadian stopwrods
     Sentence extracted from the law code of Hammurabi, law 3 (Martha Roth 2nd Edition 1997, Law Collections from
     Mesopotamia and Asia Minor).
     """
     sentence = "šumma awīlum ina dīnim ana šībūt sarrātim ūṣiamma awat iqbû la uktīn šumma dīnum šû dīn napištim awīlum šû iddâk"
     lowered = sentence.lower()
     punkt = PunktLanguageVars()
     tokens = punkt.word_tokenize(lowered)
     no_stops = [w for w in tokens if w not in AKKADIAN_STOPS]
     target_list = ['awīlum', 'dīnim', 'šībūt', 'sarrātim', 'ūṣiamma', 'awat', 'iqbû', 'uktīn', 'dīnum',
                    'dīn', 'napištim', 'awīlum', 'iddâk']
     self.assertEqual(no_stops, target_list)
開發者ID:cltk,項目名稱:cltk,代碼行數:14,代碼來源:test_stop.py

示例15: _build_concordance

    def _build_concordance(self, text_str):
        """
        Inherit or mimic the logic of ConcordanceIndex() at http://www.nltk.org/_modules/nltk/text.html
        and/or ConcordanceSearchView() & SearchCorpus() at https://github.com/nltk/nltk/blob/develop/nltk/app/concordance_app.py
        :param text_string: Text to be turned into a concordance
        :type text_string: str
        :return: list
        """
        p = PunktLanguageVars()
        orig_tokens = p.word_tokenize(text_str)
        c = ConcordanceIndex(orig_tokens)

        #! rm dupes after index, before loop
        tokens = set(orig_tokens)
        tokens = [x for x in tokens if x not in [',', '.', ';', ':', '"', "'", '[', ']']]  # this needs to be changed or rm'ed

        return c.return_concordance_all(tokens)
開發者ID:Akirato,項目名稱:cltk,代碼行數:17,代碼來源:philology.py


注:本文中的nltk.tokenize.punkt.PunktLanguageVars類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。