本文整理匯總了Python中nltk.parse.dependencygraph.DependencyGraph.root方法的典型用法代碼示例。如果您正苦於以下問題:Python DependencyGraph.root方法的具體用法?Python DependencyGraph.root怎麽用?Python DependencyGraph.root使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nltk.parse.dependencygraph.DependencyGraph
的用法示例。
在下文中一共展示了DependencyGraph.root方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: to_depgraph
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def to_depgraph(self, rel=None):
depgraph = DependencyGraph()
nodelist = depgraph.nodelist
self._to_depgraph(nodelist, 0, 'ROOT')
#Add all the dependencies for all the nodes
for node_addr, node in enumerate(nodelist):
for n2 in nodelist[1:]:
if n2['head'] == node_addr:
node['deps'].append(n2['address'])
depgraph.root = nodelist[1]
return depgraph
示例2: to_depgraph
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def to_depgraph(self, rel=None):
from nltk.parse.dependencygraph import DependencyGraph
depgraph = DependencyGraph()
nodelist = depgraph.nodelist
self._to_depgraph(nodelist, 0, "ROOT")
# Add all the dependencies for all the nodes
for node_addr, node in enumerate(nodelist):
for n2 in nodelist[1:]:
if n2["head"] == node_addr:
node["deps"].append(n2["address"])
depgraph.root = nodelist[1]
return depgraph
示例3: to_depgraph
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def to_depgraph(self, rel=None):
from nltk.parse.dependencygraph import DependencyGraph
depgraph = DependencyGraph()
nodes = depgraph.nodes
self._to_depgraph(nodes, 0, 'ROOT')
# Add all the dependencies for all the nodes
for address, node in nodes.items():
for n2 in (n for n in nodes.values() if n['rel'] != 'TOP'):
if n2['head'] == address:
relation = n2['rel']
node['deps'].setdefault(relation,[])
node['deps'][relation].append(n2['address'])
depgraph.root = nodes[1]
return depgraph
示例4: make_dep_tree
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def make_dep_tree(sent, deps):
adj = merge_with(cons, [], *[{x:[m]} for x,m,_ in deps])
heads = dict([(m,h) for h,m,_ in deps])
rel = dict([(m,rel) for _,m,rel in deps])
n = len(sent["x"])
pos = sent["pos"]
x = sent["x"]
nodelist = defaultdict(lambda: {"address": -1, "head": -1, "deps": [], "rel": "", "tag": "", "word": None})
for i in range(1, n):
node = nodelist[i]
node["address"] = i
node["head"] = heads[i]
node["deps"] = adj[i] if adj.has_key(i) else []
node["tag"] = pos[i]
node["word"] = x[i]
node["rel"] = rel[i]
g = DependencyGraph()
g.get_by_address(0)["deps"] = adj[0] if adj.has_key(0) else []
[g.add_node(node) for node in nodelist.values()]
g.root = nodelist[adj[0][0]]
return g
示例5: tree_to_graph
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def tree_to_graph(tree):
'''Converts a tree structure to a graph structure. This is for the accuracy() function.
Args: tree: the tree to convert
Returns: a graph representing the tree. note that this graph is really only
useable in accuracy() (the only attribute we bother setting is 'head')
Raises: None
'''
# nodes are dictionaries, which are mutable. So we copy them so we can
# change attributes without changing the original nodes
tree2 = tree_map(copy.copy, tree)
# set the head attributes of each node according to our tree structure
def set_heads(tree, parent=0):
n = label(tree)
n['head'] = parent
if isinstance(tree, Tree):
[set_heads(child, n['address']) for child in tree]
set_heads(tree2)
# now we need to generate our nodelist. This requires getting all the
# elements ("labels") of our tree and putting them in a flat list
def all_elems(tree):
elems = [label(tree)]
if isinstance(tree, Tree):
for t in tree:
elems += all_elems(t)
return elems
dg = DependencyGraph()
dg.root = dg.nodelist[0]
all = all_elems(tree2)
# nodelist should be ordered by address
all.sort(key=lambda t: label(t)['address'])
dg.nodelist += all
return dg
示例6: parse
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def parse(self, tokens):
"""
Parses the input tokens with respect to the parser's grammar. Parsing
is accomplished by representing the search-space of possible parses as
a fully-connected directed graph. Arcs that would lead to ungrammatical
parses are removed and a lattice is constructed of length n, where n is
the number of input tokens, to represent all possible grammatical
traversals. All possible paths through the lattice are then enumerated
to produce the set of non-projective parses.
param tokens: A list of tokens to parse.
type tokens: list(str)
return: An iterator of non-projective parses.
rtype: iter(DependencyGraph)
"""
# Create graph representation of tokens
self._graph = DependencyGraph()
for index, token in enumerate(tokens):
self._graph.nodes[index] = {
'word': token,
'deps': [],
'rel': 'NTOP',
'address': index,
}
for head_node in self._graph.nodes.values():
deps = []
for dep_node in self._graph.nodes.values() :
if (
self._grammar.contains(head_node['word'], dep_node['word'])
and head_node['word'] != dep_node['word']
):
deps.append(dep_node['address'])
head_node['deps'] = deps
# Create lattice of possible heads
roots = []
possible_heads = []
for i, word in enumerate(tokens):
heads = []
for j, head in enumerate(tokens):
if (i != j) and self._grammar.contains(head, word):
heads.append(j)
if len(heads) == 0:
roots.append(i)
possible_heads.append(heads)
# Set roots to attempt
if len(roots) < 2:
if len(roots) == 0:
for i in range(len(tokens)):
roots.append(i)
# Traverse lattice
analyses = []
for root in roots:
stack = []
analysis = [[] for i in range(len(possible_heads))]
i = 0
forward = True
while i >= 0:
if forward:
if len(possible_heads[i]) == 1:
analysis[i] = possible_heads[i][0]
elif len(possible_heads[i]) == 0:
analysis[i] = -1
else:
head = possible_heads[i].pop()
analysis[i] = head
stack.append([i, head])
if not forward:
index_on_stack = False
for stack_item in stack:
if stack_item[0] == i:
index_on_stack = True
orig_length = len(possible_heads[i])
if index_on_stack and orig_length == 0:
for j in range(len(stack) - 1, -1, -1):
stack_item = stack[j]
if stack_item[0] == i:
possible_heads[i].append(stack.pop(j)[1])
elif index_on_stack and orig_length > 0:
head = possible_heads[i].pop()
analysis[i] = head
stack.append([i, head])
forward = True
if i + 1 == len(possible_heads):
analyses.append(analysis[:])
forward = False
if forward:
i += 1
else:
i -= 1
# Filter parses
# ensure 1 root, every thing has 1 head
#.........這裏部分代碼省略.........
示例7: as_dependencygraph
# 需要導入模塊: from nltk.parse.dependencygraph import DependencyGraph [as 別名]
# 或者: from nltk.parse.dependencygraph.DependencyGraph import root [as 別名]
def as_dependencygraph( self, keep_dummy_root=False, add_morph=True ):
''' Returns this tree as NLTK's DependencyGraph object.
Note that this method constructs 'zero_based' graph,
where counting of the words starts from 0 and the
root index is -1 (not 0, as in Malt-TAB format);
Parameters
-----------
add_morph : bool
Specifies whether the morphological information
(information about word lemmas, part-of-speech, and
features) should be added to graph nodes.
Note that even if **add_morph==True**, morphological
information is only added if it is available via
estnltk's layer token['analysis'];
Default: True
keep_dummy_root : bool
Specifies whether the graph should include a dummy
TOP / ROOT node, which does not refer to any word,
and yet is the topmost node of the tree.
If the dummy root node is not used, then the root
node is the word node headed by -1;
Default: False
For more information about NLTK's DependencyGraph, see:
http://www.nltk.org/_modules/nltk/parse/dependencygraph.html
'''
from nltk.parse.dependencygraph import DependencyGraph
graph = DependencyGraph( zero_based = True )
all_tree_nodes = [self] + self.get_children()
#
# 0) Fix the root
#
if keep_dummy_root:
# Note: we have to re-construct the root node manually,
# as DependencyGraph's current interface seems to provide
# no easy/convenient means for fixing the root node;
graph.nodes[-1] = graph.nodes[0]
graph.nodes[-1].update( { 'address': -1 } )
graph.root = graph.nodes[-1]
del graph.nodes[0]
#
# 1) Update / Add nodes of the graph
#
for child in all_tree_nodes:
rel = 'xxx' if not child.labels else '|'.join(child.labels)
address = child.word_id
word = child.text
graph.nodes[address].update(
{
'address': address,
'word': child.text,
'rel': rel,
} )
if not keep_dummy_root and child == self:
# If we do not keep the dummy root node, set this tree
# as the root node
graph.root = graph.nodes[address]
if add_morph and child.morph:
# Add morphological information, if possible
lemmas = set([analysis[LEMMA] for analysis in child.morph])
postags = set([analysis[POSTAG] for analysis in child.morph])
feats = set([analysis[FORM] for analysis in child.morph])
lemma = ('|'.join( list(lemmas) )).replace(' ','_')
postag = ('|'.join( list(postags) )).replace(' ','_')
feats = ('|'.join( list(feats) )).replace(' ','_')
graph.nodes[address].update(
{
'tag ': postag,
'ctag' : postag,
'feats': feats,
'lemma': lemma
} )
#
# 2) Update / Add arcs of the graph
#
for child in all_tree_nodes:
# Connect children of given word
deps = [] if not child.children else [c.word_id for c in child.children]
head_address = child.word_id
for dep in deps:
graph.add_arc( head_address, dep )
if child.parent == None and keep_dummy_root:
graph.add_arc( -1, head_address )
# Connect the parent of given node
head = -1 if not child.parent else child.parent.word_id
graph.nodes[head_address].update(
{
'head': head,
} )
return graph