當前位置: 首頁>>代碼示例>>Python>>正文


Python VectorSpaceClusterer.__init__方法代碼示例

本文整理匯總了Python中nltk.cluster.util.VectorSpaceClusterer.__init__方法的典型用法代碼示例。如果您正苦於以下問題:Python VectorSpaceClusterer.__init__方法的具體用法?Python VectorSpaceClusterer.__init__怎麽用?Python VectorSpaceClusterer.__init__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nltk.cluster.util.VectorSpaceClusterer的用法示例。


在下文中一共展示了VectorSpaceClusterer.__init__方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nltk.cluster.util import VectorSpaceClusterer [as 別名]
# 或者: from nltk.cluster.util.VectorSpaceClusterer import __init__ [as 別名]
    def __init__(self, initial_means, priors=None, covariance_matrices=None,
                       conv_threshold=1e-6, bias=0.1, normalise=False,
                       svd_dimensions=None):
        """
        Creates an EM clusterer with the given starting parameters,
        convergence threshold and vector mangling parameters.

        :param  initial_means: the means of the gaussian cluster centers
        :type   initial_means: [seq of] numpy array or seq of SparseArray
        :param  priors: the prior probability for each cluster
        :type   priors: numpy array or seq of float
        :param  covariance_matrices: the covariance matrix for each cluster
        :type   covariance_matrices: [seq of] numpy array
        :param  conv_threshold: maximum change in likelihood before deemed
                    convergent
        :type   conv_threshold: int or float
        :param  bias: variance bias used to ensure non-singular covariance
                      matrices
        :type   bias: float
        :param  normalise:  should vectors be normalised to length 1
        :type   normalise:  boolean
        :param  svd_dimensions: number of dimensions to use in reducing vector
                               dimensionsionality with SVD
        :type   svd_dimensions: int
        """
        VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
        self._means = numpy.array(initial_means, numpy.float64)
        self._num_clusters = len(initial_means)
        self._conv_threshold = conv_threshold
        self._covariance_matrices = covariance_matrices
        self._priors = priors
        self._bias = bias
開發者ID:52nlp,項目名稱:Text-Summarization,代碼行數:34,代碼來源:em.py

示例2: __init__

# 需要導入模塊: from nltk.cluster.util import VectorSpaceClusterer [as 別名]
# 或者: from nltk.cluster.util.VectorSpaceClusterer import __init__ [as 別名]
 def __init__(self, num_means, distance, repeats=1,
                    conv_test=1e-6, initial_means=None,
                    normalise=False, svd_dimensions=None,
                    rng=None):
     """
     :param  num_means:  the number of means to use (may use fewer)
     :type   num_means:  int
     :param  distance:   measure of distance between two vectors
     :type   distance:   function taking two vectors and returing a float
     :param  repeats:    number of randomised clustering trials to use
     :type   repeats:    int
     :param  conv_test:  maximum variation in mean differences before
                         deemed convergent
     :type   conv_test:  number
     :param  initial_means: set of k initial means
     :type   initial_means: sequence of vectors
     :param  normalise:  should vectors be normalised to length 1
     :type   normalise:  boolean
     :param svd_dimensions: number of dimensions to use in reducing vector
                            dimensionsionality with SVD
     :type svd_dimensions: int 
     :param  rng:        random number generator (or None)
     :type   rng:        Random
     """
     VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
     self._num_means = num_means
     self._distance = distance
     self._max_difference = conv_test
     assert not initial_means or len(initial_means) == num_means
     self._means = initial_means
     assert repeats >= 1
     assert not (initial_means and repeats > 1)
     self._repeats = repeats
     if rng: self._rng = rng
     else:   self._rng = random.Random()
開發者ID:timClicks,項目名稱:nltk,代碼行數:37,代碼來源:kmeans.py

示例3: __init__

# 需要導入模塊: from nltk.cluster.util import VectorSpaceClusterer [as 別名]
# 或者: from nltk.cluster.util.VectorSpaceClusterer import __init__ [as 別名]
 def __init__(self, num_clusters=1, normalise=True, svd_dimensions=None):
     VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
     self._num_clusters = num_clusters
     self._dendrogram = None
     self._groups_values = None
開發者ID:DrDub,項目名稱:nltk,代碼行數:7,代碼來源:gaac.py


注:本文中的nltk.cluster.util.VectorSpaceClusterer.__init__方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。