本文整理匯總了Python中nltk.cluster.util.VectorSpaceClusterer.__init__方法的典型用法代碼示例。如果您正苦於以下問題:Python VectorSpaceClusterer.__init__方法的具體用法?Python VectorSpaceClusterer.__init__怎麽用?Python VectorSpaceClusterer.__init__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nltk.cluster.util.VectorSpaceClusterer
的用法示例。
在下文中一共展示了VectorSpaceClusterer.__init__方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from nltk.cluster.util import VectorSpaceClusterer [as 別名]
# 或者: from nltk.cluster.util.VectorSpaceClusterer import __init__ [as 別名]
def __init__(self, initial_means, priors=None, covariance_matrices=None,
conv_threshold=1e-6, bias=0.1, normalise=False,
svd_dimensions=None):
"""
Creates an EM clusterer with the given starting parameters,
convergence threshold and vector mangling parameters.
:param initial_means: the means of the gaussian cluster centers
:type initial_means: [seq of] numpy array or seq of SparseArray
:param priors: the prior probability for each cluster
:type priors: numpy array or seq of float
:param covariance_matrices: the covariance matrix for each cluster
:type covariance_matrices: [seq of] numpy array
:param conv_threshold: maximum change in likelihood before deemed
convergent
:type conv_threshold: int or float
:param bias: variance bias used to ensure non-singular covariance
matrices
:type bias: float
:param normalise: should vectors be normalised to length 1
:type normalise: boolean
:param svd_dimensions: number of dimensions to use in reducing vector
dimensionsionality with SVD
:type svd_dimensions: int
"""
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
self._means = numpy.array(initial_means, numpy.float64)
self._num_clusters = len(initial_means)
self._conv_threshold = conv_threshold
self._covariance_matrices = covariance_matrices
self._priors = priors
self._bias = bias
示例2: __init__
# 需要導入模塊: from nltk.cluster.util import VectorSpaceClusterer [as 別名]
# 或者: from nltk.cluster.util.VectorSpaceClusterer import __init__ [as 別名]
def __init__(self, num_means, distance, repeats=1,
conv_test=1e-6, initial_means=None,
normalise=False, svd_dimensions=None,
rng=None):
"""
:param num_means: the number of means to use (may use fewer)
:type num_means: int
:param distance: measure of distance between two vectors
:type distance: function taking two vectors and returing a float
:param repeats: number of randomised clustering trials to use
:type repeats: int
:param conv_test: maximum variation in mean differences before
deemed convergent
:type conv_test: number
:param initial_means: set of k initial means
:type initial_means: sequence of vectors
:param normalise: should vectors be normalised to length 1
:type normalise: boolean
:param svd_dimensions: number of dimensions to use in reducing vector
dimensionsionality with SVD
:type svd_dimensions: int
:param rng: random number generator (or None)
:type rng: Random
"""
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
self._num_means = num_means
self._distance = distance
self._max_difference = conv_test
assert not initial_means or len(initial_means) == num_means
self._means = initial_means
assert repeats >= 1
assert not (initial_means and repeats > 1)
self._repeats = repeats
if rng: self._rng = rng
else: self._rng = random.Random()
示例3: __init__
# 需要導入模塊: from nltk.cluster.util import VectorSpaceClusterer [as 別名]
# 或者: from nltk.cluster.util.VectorSpaceClusterer import __init__ [as 別名]
def __init__(self, num_clusters=1, normalise=True, svd_dimensions=None):
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
self._num_clusters = num_clusters
self._dendrogram = None
self._groups_values = None