當前位置: 首頁>>代碼示例>>Python>>正文


Python FMRILinearModel.fit方法代碼示例

本文整理匯總了Python中nipy.modalities.fmri.glm.FMRILinearModel.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python FMRILinearModel.fit方法的具體用法?Python FMRILinearModel.fit怎麽用?Python FMRILinearModel.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nipy.modalities.fmri.glm.FMRILinearModel的用法示例。


在下文中一共展示了FMRILinearModel.fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tortoise

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
    def tortoise(*args):
        print args
        print (
            'Fitting a "Fixed Effect" GLM for merging LR and RL '
            'phase-encoding directions for subject %s ...' % (
                subject_data.subject_id))
        fmri_glm = FMRILinearModel(subject_data.func,
                                   [design_matrix.matrix
                                    for design_matrix in design_matrices],
                                   mask='compute'
                                   )
        fmri_glm.fit(do_scaling=True, model='ar1')
        print "... done.\r\n"

        # save computed mask
        mask_path = os.path.join(subject_data.output_dir, "mask.nii")
        print "Saving mask image to %s ..." % mask_path
        nibabel.save(fmri_glm.mask, mask_path)
        print "... done.\r\n"

        z_maps = {}
        effects_maps = {}
        map_dirs = {}
        try:
            for contrast_id, contrast_val in contrasts.iteritems():
                print "\tcontrast id: %s" % contrast_id
                z_map, eff_map = fmri_glm.contrast(
                    contrast_val,
                    con_id=contrast_id,
                    output_z=True,
                    output_effects=True
                    )

                # store stat maps to disk
                for map_type, out_map in zip(['z', 'effects'],
                                             [z_map, eff_map]):
                    map_dir = os.path.join(
                        subject_data.output_dir, '%s_maps' % map_type)
                    map_dirs[map_type] = map_dir
                    if not os.path.exists(map_dir):
                        os.makedirs(map_dir)
                    map_path = os.path.join(
                        map_dir, '%s_%s.nii' % (map_type, contrast_id))
                    print "\t\tWriting %s ..." % map_path

                    nibabel.save(out_map, map_path)

                    # collect zmaps for contrasts we're interested in
                    if map_type == 'z':
                        z_maps[contrast_id] = map_path

                    if map_type == 'effects':
                        effects_maps[contrast_id] = map_path

            return effects_maps, z_maps, mask_path, map_dirs
        except:
            return None
開發者ID:bthirion,項目名稱:pypreprocess,代碼行數:59,代碼來源:hcp_preproc_and_analysis.py

示例2: _first_level_glm

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def _first_level_glm(study_dir, subject_id, model_id,
                     hrf_model='canonical', drift_model='cosine',
                     glm_model='ar1', mask='compute', verbose=1):

    study_id = os.path.split(study_dir)[1]
    subject_dir = os.path.join(study_dir, subject_id)

    if verbose > 0:
        print '%[email protected]%s: first level glm' % (subject_id, study_id)

    tr = get_study_tr(study_dir)
    images, n_scans = get_subject_bold_images(subject_dir)
    motion = get_subject_motion_per_session(subject_dir)
    contrasts = get_task_contrasts(study_dir, subject_dir, model_id)
    events = get_subject_events(study_dir, subject_dir)

    design_matrices = make_design_matrices(events, n_scans, tr,
                                           hrf_model, drift_model, motion)

    glm = FMRILinearModel(images, design_matrices, mask=mask)
    glm.fit(do_scaling=True, model=glm_model)

    for contrast_id in contrasts:

        con_val = []
        for session_con, session_dm in zip(contrasts[contrast_id],
                                           design_matrices):
            con = np.zeros(session_dm.shape[1])
            con[:len(session_con)] = session_con
            con_val.append(con)

        z_map, t_map, c_map, var_map = glm.contrast(
            con_val,
            con_id=contrast_id,
            output_z=True,
            output_stat=True,
            output_effects=True,
            output_variance=True,)

        model_dir = os.path.join(subject_dir, 'model',  model_id)

        for dtype, img in zip(['z', 't', 'c', 'var'],
                              [z_map, t_map, c_map, var_map]):

            map_dir = os.path.join(model_dir, '%s_maps' % dtype)

            if not os.path.exists(map_dir):
                os.makedirs(map_dir)

            path = os.path.join(
                map_dir, '%s.nii.gz' % normalize_name(contrast_id))
            nb.save(img, path)

    nb.save(glm.mask, os.path.join(model_dir, 'mask.nii.gz'))
開發者ID:fabianp,項目名稱:pypreprocess,代碼行數:56,代碼來源:openfmri.py

示例3: _apply_glm

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def _apply_glm(out_dir, data, design_matrices,
               contrasts, mask='compute', model_id=None, resample=True):

    # print out_dir
    bold_dir = os.path.join(out_dir, 'fmri')
    if not os.path.exists(bold_dir):
        os.makedirs(bold_dir)
    for i, img in enumerate(data):
        if type(img) is str:
            img = nb.load(img)
        nb.save(img, os.path.join(bold_dir, 'bold_session_%i.nii.gz' % i))

    # fit glm
    glm = FMRILinearModel(data, design_matrices, mask=mask)
    glm.fit(do_scaling=True, model='ar1')

    nb.save(glm.mask, os.path.join(out_dir, 'mask.nii.gz'))
    if resample:
        resample_niimg(os.path.join(out_dir, 'mask.nii.gz'))

    stat_maps = {}
    for contrast_id in contrasts:
        stat_maps[contrast_id] = {}
        z_map, t_map, c_map, var_map = glm.contrast(
            contrasts[contrast_id],
            con_id=contrast_id,
            output_z=True,
            output_stat=True,
            output_effects=True,
            output_variance=True,)

        for dtype, out_map in zip(['z', 't', 'c', 'variance'],
                                  [z_map, t_map, c_map, var_map]):
            map_dir = os.path.join(out_dir, '%s_maps' % dtype)
            if not os.path.exists(map_dir):
                os.makedirs(map_dir)
            if model_id:
                map_path = os.path.join(
                    map_dir, '%s_%s.nii.gz' % (model_id, contrast_id))
            else:
                map_path = os.path.join(
                    map_dir, '%s.nii.gz' % contrast_id)
            nb.save(out_map, map_path)
            if resample:
                resample_niimg(map_path)

            stat_maps[contrast_id][dtype] = map_path


    return stat_maps
開發者ID:VirgileFritsch,項目名稱:pypreprocess,代碼行數:52,代碼來源:nipy_glm_utils.py

示例4: _first_level

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def _first_level(out_dir, data, design_matrices, contrasts,
                 glm_model='ar1', mask='compute', verbose=1):
    if verbose:
        print '%s:' % out_dir

    data = check_niimgs(data)
    design_matrices = check_design_matrices(design_matrices)
    contrasts = check_contrasts(contrasts)
    glm = FMRILinearModel(data, design_matrices, mask=mask)
    glm.fit(do_scaling=True, model=glm_model)

    for i, contrast_id in enumerate(contrasts):
        if verbose:
            print '  %s/%s - %s ' % (i, len(contrasts), contrast_id)

        con_val = []
        for session_con, session_dm in zip(contrasts[contrast_id],
                                           design_matrices):

            con = np.zeros(session_dm.shape[1])
            con[:len(session_con)] = session_con
            con_val.append(con)

        z_map, t_map, c_map, var_map = glm.contrast(
            con_val,
            con_id=contrast_id,
            output_z=True,
            output_stat=True,
            output_effects=True,
            output_variance=True,)

        for dtype, img in zip(['z', 't', 'c', 'var'],
                              [z_map, t_map, c_map, var_map]):

            map_dir = os.path.join(out_dir, '%s_maps' % dtype)

            if not os.path.exists(map_dir):
                os.makedirs(map_dir)

            path = os.path.join(
                map_dir, '%s.nii.gz' % remove_special(contrast_id))
            nb.save(img, path)

    nb.save(glm.mask, os.path.join(out_dir, 'mask.nii.gz'))
開發者ID:JohnGriffiths,項目名稱:spym,代碼行數:46,代碼來源:glm.py

示例5: FMRILinearModel

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
    sujects_effects_maps = [subject_glm_results[1]
                           for subject_glm_results in group_glm_inputs]
    group_level_z_maps = {}
    design_matrix = np.ones(len(sujects_effects_maps)
                            )[:, np.newaxis]  # only the intercept
    for contrast_id in contrasts:
        print "\tcontrast id: %s" % contrast_id

        # effects maps will be the input to the second level GLM
        first_level_image = nibabel.concat_images(
            [x[contrast_id] for x in sujects_effects_maps])

        # fit 2nd level GLM for given contrast
        group_model = FMRILinearModel(first_level_image,
                                    design_matrix, group_mask)
        group_model.fit(do_scaling=False, model='ols')

        # specify and estimate the contrast
        contrast_val = np.array(([[1.]]))  # the only possible contrast !
        z_map, = group_model.contrast(contrast_val,
                                    con_id='one_sample %s' % contrast_id,
                                    output_z=True)

        # save map
        map_dir = os.path.join(output_dir, 'z_maps')
        if not os.path.exists(map_dir):
            os.makedirs(map_dir)
        map_path = os.path.join(map_dir, '2nd_level_%s.nii.gz' % (
                contrast_id))
        print "\t\tWriting %s ..." % map_path
        nibabel.save(z_map, map_path)
開發者ID:VirgileFritsch,項目名稱:pypreprocess,代碼行數:33,代碼來源:br41nH4ck_purepython.py

示例6: group_one_sample_t_test

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def group_one_sample_t_test(masks, effects_maps, contrasts, output_dir,
                            start_time=base_reporter.pretty_time(),
                            **kwargs):
    """
    Runs a one-sample t-test procedure for group analysis. Here, we are
    for each experimental condition, only interested refuting the null
    hypothesis H0: "The average effect accross the subjects is zero!"

    Parameters
    ----------
    masks: list of strings or nibabel image objects
        subject masks, one per subject

    effects_maps: list of dicts of lists
        effects maps from subject-level GLM; each entry is a dictionary;
        each entry (indexed by condition id) of this dictionary is the
        filename (or correspinding nibabel image object) for the effects
        maps for that condition (aka contrast),for that subject

    contrasts: dictionary of array_likes
        contrasts vectors, indexed by condition id

    kwargs: dict_like
        parameters can be regular `nipy.labs.viz.plot_map` parameters
        (e.g slicer="y") or any parameter we want be reported (e.g
        fwhm=[5, 5, 5])

    """

    # make output directory
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    assert len(masks) == len(effects_maps), (len(masks), len(effects_maps))

    # compute group mask
    group_mask = nibabel.Nifti1Image(
        intersect_masks(masks).astype(np.int8),
        (nibabel.load(masks[0]) if isinstance(
                masks[0], basestring) else masks[0]).get_affine())

    # construct design matrix (only one covariate, namely the "mean effect")
    design_matrix = np.ones(len(effects_maps)
                            )[:, np.newaxis]  # only the intercept

    group_level_z_maps = {}
    group_level_t_maps = {}
    for contrast_id in contrasts:
        print "\tcontrast id: %s" % contrast_id

        # effects maps will be the input to the second level GLM
        first_level_image = nibabel.concat_images(
            [x[contrast_id] for x in effects_maps])

        # fit 2nd level GLM for given contrast
        group_model = FMRILinearModel(first_level_image,
                                      design_matrix, group_mask)
        group_model.fit(do_scaling=False, model='ols')

        # specify and estimate the contrast
        contrast_val = np.array(([[1.]])
                                )  # the only possible contrast !
        z_map, t_map = group_model.contrast(contrast_val,
                                      con_id='one_sample %s' % contrast_id,
                                      output_z=True,
                                      output_stat=True)

        # save map
        for map_type, map_img in zip(["z", "t"], [z_map, t_map]):
            map_dir = os.path.join(output_dir, '%s_maps' % map_type)
            if not os.path.exists(map_dir):
                os.makedirs(map_dir)
            map_path = os.path.join(map_dir, 'group_level_%s.nii.gz' % (
                    contrast_id))
            print "\t\tWriting %s ..." % map_path
            nibabel.save(map_img, map_path)
            if map_type == "z":
                group_level_z_maps[contrast_id] = map_path
            elif map_type == "t":
                group_level_z_maps[contrast_id] = map_path

    # do stats report
    stats_report_filename = os.path.join(
        output_dir, "report_stats.html")
    generate_subject_stats_report(stats_report_filename, contrasts,
                                  group_level_z_maps, group_mask,
                                  start_time=start_time,
                                  **kwargs)

    print "\r\nStatistic report written to %s\r\n" % (
        stats_report_filename)

    return group_level_z_maps
開發者ID:VirgileFritsch,項目名稱:pypreprocess,代碼行數:95,代碼來源:glm_reporter.py

示例7: run_suject_level1_glm

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]

#.........這裏部分代碼省略.........
        for contrast_id, contrast_val in contrasts.iteritems():
            for map_type in ['z', 'effects']:
                map_dir = os.path.join(
                    subject_output_dir, '%s_maps' % map_type)
                if not os.path.exists(map_dir):
                    os.makedirs(map_dir)
                map_path = os.path.join(
                    map_dir, '%s.nii.gz' % contrast_id)
                if not os.path.exists(map_path):
                    skip = 0
                    break

                # collect zmaps for contrasts we're interested in
                if map_type == 'z':
                    z_maps[contrast_id] = map_path

                if map_type == 'effects':
                    effects_maps[contrast_id] = map_path

            if skip:
                print "Skipping subject %s..." % (
                    subject_id)

    # fit GLM
    if not skip:
        print (
            'Fitting a "Fixed Effect" GLM for merging LR and RL phase-encoding '
            'directions for subject %s ...' % subject_id)
        fmri_glm = FMRILinearModel(fmri_files,
                                   [design_matrix.matrix
                                    for design_matrix in design_matrices],
                                   mask='compute'
                                   )
        fmri_glm.fit(do_scaling=True, model='ar1')
        print "... done.\r\n"

        # save computed mask
        mask_path = os.path.join(subject_output_dir, "mask.nii.gz")
        print "Saving mask image to %s ..." % mask_path
        nibabel.save(fmri_glm.mask, mask_path)
        print "... done.\r\n"

        # compute effects
        for contrast_id, contrast_val in contrasts.iteritems():
            print "\tcontrast id: %s" % contrast_id
            z_map, eff_map = fmri_glm.contrast(
                contrast_val,
                con_id=contrast_id,
                output_z=True,
                output_effects=True
                )

            # store stat maps to disk
            for map_type, out_map in zip(['z', 'effects'],
                                         [z_map, eff_map]):
                map_dir = os.path.join(
                    subject_output_dir, '%s_maps' % map_type)
                if not os.path.exists(map_dir):
                    os.makedirs(map_dir)
                map_path = os.path.join(
                    map_dir, '%s.nii.gz' % contrast_id)
                print "\t\tWriting %s ..." % map_path
                nibabel.save(out_map, map_path)

                # collect zmaps for contrasts we're interested in
                if map_type == 'z':
開發者ID:fabianp,項目名稱:pypreprocess,代碼行數:70,代碼來源:hcp_preproc_and_analysis.py

示例8: do_glm_for_subject

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def do_glm_for_subject(subject_id, bold_base_folder, trial_base_folder,
                       output_base_folder):

    subject_dir = path(bold_base_folder) / ("sub%03d" % subject_id)
    output_dir = (path(output_base_folder) / ("sub%03d" % subject_id) /
                  "model001")
    print output_dir
    if not output_dir.exists():
        output_dir.makedirs()


    anat_file = subject_dir / "highres001.nii"
    anat = nb.load(anat_file)
    run_ids = range(1, 10)

    task_bold_files = [subject_dir.glob("task001_run%03d/rbold*.nii"
                                        % rid)[0]
                       for rid in run_ids]
    task_mvt_files = [subject_dir.glob("task001_run%03d/rp_bold*.txt" % 
                                       rid)[0]
                      for rid in run_ids]

    trial_files = [(path(trial_base_folder) / ("Sub%02d" % subject_id) /
                   "BOLD" / "Trials" / ("run_%02d_spmdef.txt" % rid))
                   for rid in range(1, 10)]
    stats_start_time = pretty_time()
    paradigms = []
    design_matrices = []
    n_scans = []
    all_frametimes = []
    list_of_contrast_dicts = []  # one dict per run

    for bold_file, mvt_file, trial_file in zip(task_bold_files, 
                                               task_mvt_files,
                                               trial_files):

        _n_scans = nb.load(bold_file).shape[-1]
        n_scans.append(_n_scans)
        paradigm = make_paradigm(trial_file)
        paradigms.append(paradigm)
        movements = np.loadtxt(mvt_file)

        tr = 2.
        drift_model = "Cosine"
        hrf_model = "Canonical With Derivative"
        hfcut = 128.

        frametimes = np.linspace(0, (_n_scans - 1) * tr, _n_scans)

        design_matrix = make_dmtx(
            frametimes,
            paradigm,
            hrf_model=hrf_model,
            drift_model=drift_model,
            hfcut=hfcut,
            add_regs=movements,
            add_reg_names=[
                "Tx", "Ty", "Tz", "R1", "R2", "R3"])

        design_matrices.append(design_matrix)
        all_frametimes.append(frametimes)

        # specify contrasts
        contrasts = {}
        n_columns = len(design_matrix.names)
        for i in xrange(paradigm.n_conditions):
            contrasts['%s' % design_matrix.names[2 * i]] = np.eye(
                n_columns)[2 * i]

        # more interesting contrasts"""
        contrasts['Famous-Unfamiliar'] = contrasts[
            'Famous'] - contrasts['Unfamiliar']
        contrasts['Unfamiliar-Famous'] = -contrasts['Famous-Unfamiliar']
        contrasts['Famous-Scrambled'] = contrasts[
            'Famous'] - contrasts['Scrambled']
        contrasts['Scrambled-Famous'] = -contrasts['Famous-Scrambled']
        contrasts['Unfamiliar-Scrambled'] = contrasts[
            'Unfamiliar'] - contrasts['Scrambled']
        contrasts['Scrambled-Unfamiliar'] = -contrasts['Unfamiliar-Scrambled']

        list_of_contrast_dicts.append(contrasts)


    # importat maps
    z_maps = {}
    effects_maps = {}

    fmri_glm = FMRILinearModel(task_bold_files,
                               [dm.matrix for dm in design_matrices],
                               mask="compute")
    fmri_glm.fit(do_scaling=True, model="ar1")

    # replicate contrasts across runs
    contrasts = dict((cid, [contrasts[cid]
                            for contrasts in list_of_contrast_dicts])
                     for cid, cval in contrasts.iteritems())

    # compute effects
    for contrast_id, contrast_val in contrasts.iteritems():
        print "\tcontrast id: %s" % contrast_id
#.........這裏部分代碼省略.........
開發者ID:eickenberg,項目名稱:parietal-retreat,代碼行數:103,代碼來源:glm_fixed_across_session.py

示例9: execute_glm

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def execute_glm(doc, out_dir, contrast_definitions=None,
                outputs=None, glm_model='ar1',
                ):
    """Function to execute GLM for one subject --and perhaps multiple
    sessions thereof

    """

    stats_start_time = time.ctime()

    # study_dir = os.path.join(out_dir, doc['study'])

    if outputs is None:
        outputs = {'maps': False,
                   'data': False,
                   'mask': True,
                   'model': True,
                   }
    else:
        outputs['maps'] = False

    subject_id = doc['subject']
    subject_output_dir = os.path.join(
        out_dir, subject_id)

    _export(doc, subject_output_dir, outputs=outputs)

    params = load_glm_params(doc)

    # instantiate GLM
    fmri_glm = FMRILinearModel(params['data'],
                          params['design_matrices'],
                          doc['mask'])

    # fit GLM
    fmri_glm.fit(do_scaling=True, model=glm_model)

    # save beta-maps to disk
    beta_map_dir = os.path.join(subject_output_dir, 'beta_maps')
    if not os.path.exists(beta_map_dir):
        os.makedirs(beta_map_dir)
    for j, glm in zip(range(len(fmri_glm.glms)), fmri_glm.glms):
        # XXX save array in some compressed format
        np.savetxt(os.path.join(beta_map_dir, "beta_map_%i.txt" % j),
                   glm.get_beta(),  # array has shape (n_conditions, n_voxels)
                   )

    # define contrasts
    if contrast_definitions is not None:
        params['contrasts'] = make_contrasts(params, contrast_definitions)
    contrasts = sorted(params['contrasts'][0].keys())

    _contrasts = {}
    z_maps = {}

    # compute stats maps
    for index, contrast_id in enumerate(contrasts):
        print ' study[%s] subject[%s] contrast [%s]: %i/%i' % (
            doc['study'], doc['subject'],
            contrast_id, index + 1, len(contrasts)
            )

        contrast = [c[contrast_id] for c in params['contrasts']]
        contrast_name = contrast_id.replace(' ', '_')

        z_map, t_map, c_map, var_map = fmri_glm.contrast(
            contrast,
            con_id=contrast_id,
            output_z=True,
            output_stat=True,
            output_effects=True,
            output_variance=True,)

        for dtype, out_map in zip(['z', 't', 'c', 'variance'],
                                  [z_map, t_map, c_map, var_map]):
            map_dir = os.path.join(subject_output_dir, '%s_maps' % dtype)
            if not os.path.exists(map_dir):
                os.makedirs(map_dir)
            map_path = os.path.join(map_dir, '%s.nii.gz' % contrast_name)
            nb.save(out_map, map_path)

            # collect z map
            if dtype == 'z':
                _contrasts[contrast_name] = contrast
                z_maps[contrast_name] = map_path

    # invoke a single API to handle plotting and html business for you
    subject_stats_report_filename = os.path.join(
        subject_output_dir, "report_stats.html")
    glm_reporter.generate_subject_stats_report(
        subject_stats_report_filename,
        _contrasts,
        z_maps,
        doc['mask'],
        design_matrices=list(params['design_matrices']),
        subject_id=doc['subject'],
        cluster_th=15,  # 15 voxels
        start_time=stats_start_time,
        TR=doc['TR'],
        n_scans=doc['n_scans'],
#.........這裏部分代碼省略.........
開發者ID:MartinPerez,項目名稱:pypreprocess,代碼行數:103,代碼來源:utils.py

示例10: print

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
    except ValueError:
        print(USAGE)
        exit(1)

# Input files
fmri_files = [example_data.get_filename('fiac', 'fiac0', run)
              for run in ['run1.nii.gz', 'run2.nii.gz']]
design_files = [example_data.get_filename('fiac', 'fiac0', run)
                for run in ['run1_design.npz', 'run2_design.npz']]
mask_file = example_data.get_filename('fiac', 'fiac0', 'mask.nii.gz')

# Load all the data
multi_session_model = FMRILinearModel(fmri_files, design_files, mask_file)

# GLM fitting
multi_session_model.fit(do_scaling=True, model='ar1')

# Compute the required contrast
print('Computing test contrast image...')
n_regressors = [np.load(f)['X'].shape[1] for f in design_files]
con = [np.hstack((cvect, np.zeros(nr - len(cvect)))) for nr in n_regressors]
z_map, = multi_session_model.contrast(con)

# Show Z-map image
mean_map = multi_session_model.means[0]
plot_map(z_map.get_data(),
         z_map.get_affine(),
         anat=mean_map.get_data(),
         anat_affine=mean_map.get_affine(),
         cmap=cm.cold_hot,
         threshold=2.5,
開發者ID:GaelVaroquaux,項目名稱:nipy,代碼行數:33,代碼來源:compute_fmri_contrast.py

示例11: first_level

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def first_level(subject_dic):
    # experimental paradigm meta-params
    stats_start_time = time.ctime()
    tr = 2.4
    drift_model = 'blank'
    hrf_model = 'canonical'  # hemodynamic reponse function
    hfcut = 128.
    n_scans = 128

    # make design matrices
    mask_images = []
    design_matrices = []
    fmri_files = subject_dic['func']

    for x in xrange(len(fmri_files)):
        paradigm = paradigm_contrasts.localizer_paradigm()

        # build design matrix
        frametimes = np.linspace(0, (n_scans - 1) * tr, n_scans)
        design_matrix = make_dmtx(
            frametimes,
            paradigm, hrf_model=hrf_model,
            drift_model=drift_model, hfcut=hfcut,
            )
        design_matrices.append(design_matrix)

    # Specify contrasts
    contrasts = paradigm_contrasts.localizer_contrasts(design_matrix)

    #create output directory
    subject_session_output_dir = os.path.join(subject_dic['output_dir'],
                                                  'res_stats')

    if not os.path.exists(subject_session_output_dir):
             os.makedirs(subject_session_output_dir)

    # Fit GLM
    print 'Fitting a GLM (this takes time)...'
    fmri_glm = FMRILinearModel(fmri_files,
                               [design_matrix.matrix
                                for design_matrix in design_matrices],
                               mask='compute'
                               )
    fmri_glm.fit(do_scaling=True, model='ar1')

    # save computed mask
    mask_path = os.path.join(subject_session_output_dir,
                             "mask.nii.gz")
    print "Saving mask image %s" % mask_path
    nibabel.save(fmri_glm.mask, mask_path)
    mask_images.append(mask_path)

    # compute contrasts
    z_maps = {}
    effects_maps = {}
    for contrast_id, contrast_val in contrasts.iteritems():
        print "\tcontrast id: %s" % contrast_id
        z_map, t_map, effects_map, var_map = fmri_glm.contrast(
            [contrast_val] * 1,
            con_id=contrast_id,
            output_z=True,
            output_stat=True,
            output_effects=True,
            output_variance=True
            )

        # store stat maps to disk
        for map_type, out_map in zip(['z', 't', 'effects', 'variance'],
                                  [z_map, t_map, effects_map, var_map]):
            map_dir = os.path.join(
                subject_session_output_dir, '%s_maps' % map_type)
            if not os.path.exists(map_dir):
                os.makedirs(map_dir)
            map_path = os.path.join(
                map_dir, '%s%s.nii.gz' %(subject_dic['subject_id'], contrast_id))
            print "\t\tWriting %s ..." % map_path
            nibabel.save(out_map, map_path)

            # collect zmaps for contrasts we're interested in
            if map_type == 'z':
                z_maps[contrast_id] = map_path
            if map_type == 'effects':
                effects_maps[contrast_id] = map_path

    # do stats report
    anat_img = nibabel.load(subject_dic['anat'])
    stats_report_filename = os.path.join(subject_session_output_dir,
                                         "report_stats.html")
                                         
    generate_subject_stats_report(
        stats_report_filename,
        contrasts,
        z_maps,
        fmri_glm.mask,
        threshold=2.3,
        cluster_th=15,
        anat=anat_img,
        anat_affine=anat_img.get_affine(),
        design_matrices=design_matrix,
        subject_id="sub001",
#.........這裏部分代碼省略.........
開發者ID:MartinPerez,項目名稱:unicog,代碼行數:103,代碼來源:preprocess_and_1st_level.py

示例12: do_subject_glm

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def do_subject_glm(subject_data):
    """FE analysis for a single subject."""
    subject_id = subject_data['subject_id']
    output_dir = subject_data["output_dir"]
    func_files = subject_data['func']
    anat = subject_data['anat']
    onset_files = subject_data['onset']
    tr = subject_data['TR']
    time_units = subject_data['time_units'].lower()
    assert time_units in ["seconds", "tr", "milliseconds"]
    drift_model = subject_data['drift_model']
    hrf_model = subject_data["hrf_model"]
    hfcut = subject_data["hfcut"]
    mem = Memory(os.path.join(output_dir, "cache"))
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    if 0:
        subject_data = mem.cache(do_subject_preproc)(
            dict(func=func_files, anat=anat, output_dir=output_dir))
        func_files = subject_data['func']
        anat = subject_data['anat']

        # reslice func images
        func_files = [mem.cache(reslice_vols)(
            sess_func, target_affine=nibabel.load(sess_func[0]).get_affine())
                      for sess_func in func_files]

    ### GLM: loop on (session_bold, onse_file) pairs over the various sessions
    design_matrices = []
    for func_file, onset_file in zip(func_files, onset_files):
        if isinstance(func_file, str):
            bold = nibabel.load(func_file)
        else:
            if len(func_file) == 1:
                func_file = func_file[0]
                bold = nibabel.load(func_file)
                assert len(bold.shape) == 4
                n_scans = bold.shape[-1]
                del bold
            else:
                n_scans = len(func_file)
        frametimes = np.linspace(0, (n_scans - 1) * tr, n_scans)
        conditions, onsets, durations, amplitudes = parse_onset_file(
            onset_file)
        if time_units == "tr":
            onsets *= tr
            durations *= tr
        elif time_units in ["milliseconds"]:
            onsets *= 1e-3
            durations *= 1e-3
        paradigm = BlockParadigm(con_id=conditions, onset=onsets,
                                 duration=durations, amplitude=amplitudes)
        design_matrices.append(make_dmtx(
                frametimes,
                paradigm, hrf_model=hrf_model,
                drift_model=drift_model, hfcut=hfcut))

    # specify contrasts
    n_columns = len(design_matrices[0].names)
    contrasts = {}
    for i in range(paradigm.n_conditions):
        contrasts['%s' % design_matrices[0].names[2 * i]
                  ] = np.eye(n_columns)[2 * i]

    # effects of interest F-test
    diff_contrasts = []
    for i in range(paradigm.n_conditions - 1):
        a = contrasts[design_matrices[0].names[2 * i]]
        b = contrasts[design_matrices[0].names[2 * (i + 1)]]
        diff_contrasts.append(a - b)
    contrasts["diff"] = diff_contrasts

    # fit GLM
    print('Fitting a GLM (this takes time)...')
    fmri_glm = FMRILinearModel([nibabel.concat_images(sess_func,
                                                      check_affines=False)
                                for sess_func in func_files],
                               [design_matrix.matrix
                                for design_matrix in design_matrices],
                               mask='compute'
                               )
    fmri_glm.fit(do_scaling=True, model='ar1')

    # save computed mask
    mask_path = os.path.join(output_dir, "mask.nii.gz")

    print("Saving mask image %s" % mask_path)
    nibabel.save(fmri_glm.mask, mask_path)

    # compute contrasts
    z_maps = {}
    effects_maps = {}
    for contrast_id, contrast_val in contrasts.items():
        print("\tcontrast id: %s" % contrast_id)
        if np.ndim(contrast_val) > 1:
            contrast_type = "t"
        else:
            contrast_type = "F"
        z_map, t_map, effects_map, var_map = fmri_glm.contrast(
#.........這裏部分代碼省略.........
開發者ID:chrplr,項目名稱:pypreprocess,代碼行數:103,代碼來源:glm_utils.py

示例13: FMRILinearModel

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
)
contrasts["computation"] = contrasts["calculaudio"] + contrasts["calculvideo"]
contrasts["sentences"] = contrasts["phraseaudio"] + contrasts["phrasevideo"]
contrasts["H-V"] = contrasts["damier_H"] - contrasts["damier_V"]
contrasts["V-H"] = contrasts["damier_V"] - contrasts["damier_H"]
contrasts["audio-video"] = contrasts["audio"] - contrasts["video"]
contrasts["video-audio"] = contrasts["video"] - contrasts["audio"]
contrasts["computation-sentences"] = contrasts["computation"] - contrasts["sentences"]
contrasts["reading-visual"] = contrasts["sentences"] * 2 - contrasts["damier_H"] - contrasts["damier_V"]

########################################
# Perform a GLM analysis
########################################

fmri_glm = FMRILinearModel("s12069_swaloc1_corr.nii.gz", design_matrix.matrix, mask="compute")
fmri_glm.fit(do_scaling=True, model="ar1")

#########################################
# Estimate the contrasts
#########################################

for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
    print("  Contrast % 2i out of %i: %s" % (index + 1, len(contrasts), contrast_id))
    # save the z_image
    image_path = path.join(write_dir, "%s_z_map.nii" % contrast_id)
    z_map, = fmri_glm.contrast(contrast_val, con_id=contrast_id, output_z=True)
    save(z_map, image_path)

    # Create snapshots of the contrasts
    vmax = max(-z_map.get_data().min(), z_map.get_data().max())
    plot_map(
開發者ID:mo-jay,項目名稱:python-cogstats,代碼行數:33,代碼來源:plot_localizer_analysis.py

示例14: _preprocess_and_analysis_subject

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def _preprocess_and_analysis_subject(subject_data,
                                     do_normalize=False,
                                     fwhm=0.,
                                     slicer='z',
                                     cut_coords=6,
                                     threshold=3.,
                                     cluster_th=15
                                     ):
    """
    Preprocesses the subject and then fits (mass-univariate) GLM thereupon.

    """

    # sanitize run_ids:
    # Sub14/BOLD/Run_02/fMR09029-0004-00010-000010-01.nii is garbage,

    # for example
    run_ids = range(9)
    if subject_data['subject_id'] == "Sub14":
        run_ids = [0] + range(2, 9)
        subject_data['func'] = [subject_data['func'][0]] + subject_data[
            'func'][2:]
        subject_data['session_id'] = [subject_data['session_id'][0]
                                      ] + subject_data['session_id'][2:]

    # sanitize subject output dir
    if not 'output_dir' in subject_data:
        subject_data['output_dir'] = os.path.join(
            output_dir, subject_data['subject_id'])

    # preprocess the data
    subject_data = do_subject_preproc(SubjectData(**subject_data),
                                      do_realign=True,
                                      do_coreg=True,
                                      do_report=False,
                                      do_cv_tc=False
                                      )
    assert not subject_data.anat is None

    # norm
    if do_normalize:
        subject_data = nipype_do_subject_preproc(
            subject_data,
            do_realign=False,
            do_coreg=False,
            do_segment=True,
            do_normalize=True,
            func_write_voxel_sizes=[3, 3, 3],
            anat_write_voxel_sizes=[2, 2, 2],
            fwhm=fwhm,
            hardlink_output=False,
            do_report=False
            )

    # chronometry
    stats_start_time = pretty_time()

    # to-be merged lists, one item per run
    paradigms = []
    frametimes_list = []
    design_matrices = []  # one
    list_of_contrast_dicts = []  # one dict per run
    n_scans = []
    for run_id in run_ids:
        _n_scans = len(subject_data.func[run_id])
        n_scans.append(_n_scans)

        # make paradigm
        paradigm = make_paradigm(getattr(subject_data, 'timing')[run_id])

        # make design matrix
        tr = 2.
        drift_model = 'Cosine'
        hrf_model = 'Canonical With Derivative'
        hfcut = 128.
        frametimes = np.linspace(0, (_n_scans - 1) * tr, _n_scans)
        design_matrix = make_dmtx(
            frametimes,
            paradigm, hrf_model=hrf_model,
            drift_model=drift_model, hfcut=hfcut,
            add_regs=np.loadtxt(getattr(subject_data,
                                        'realignment_parameters')[run_id]),
            add_reg_names=[
                'Translation along x axis',
                'Translation along yaxis',
                'Translation along z axis',
                'Rotation along x axis',
                'Rotation along y axis',
                'Rotation along z axis'
                ]
            )

        # import matplotlib.pyplot as plt
        # design_matrix.show()
        # plt.show()

        paradigms.append(paradigm)
        design_matrices.append(design_matrix)
        frametimes_list.append(frametimes)
        n_scans.append(_n_scans)
#.........這裏部分代碼省略.........
開發者ID:VirgileFritsch,項目名稱:pypreprocess,代碼行數:103,代碼來源:br41nH4ck_purepython.py

示例15: execute_spm_multimodal_fmri_glm

# 需要導入模塊: from nipy.modalities.fmri.glm import FMRILinearModel [as 別名]
# 或者: from nipy.modalities.fmri.glm.FMRILinearModel import fit [as 別名]
def execute_spm_multimodal_fmri_glm(data, reg_motion=False):
    reg_motion = reg_motion and 'realignment_parameters' in data

    # experimental paradigm meta-params
    stats_start_time = time.ctime()
    tr = 2.
    drift_model = 'Cosine'
    hrf_model = 'Canonical With Derivative'
    hfcut = 128.

    # make design matrices
    design_matrices = []
    for x in xrange(2):
        n_scans = data['func'][x].shape[-1]

        timing = scipy.io.loadmat(data['trials_ses%i' % (x + 1)],
                                  squeeze_me=True, struct_as_record=False)

        faces_onsets = timing['onsets'][0].ravel()
        scrambled_onsets = timing['onsets'][1].ravel()
        onsets = np.hstack((faces_onsets, scrambled_onsets))
        onsets *= tr  # because onsets were reporting in 'scans' units
        conditions = ['faces'] * len(faces_onsets) + ['scrambled'] * len(
            scrambled_onsets)
        paradigm = EventRelatedParadigm(conditions, onsets)
        frametimes = np.linspace(0, (n_scans - 1) * tr, n_scans)

        add_reg_names = None
        add_regs = None
        if reg_motion:
            add_reg_names = ['tx', 'ty', 'tz', 'rx', 'ry', 'rz']
            add_regs = np.loadtxt(data['realignment_parameters'][x])
            if isinstance(add_regs):
                add_regs = np.loadtxt(add_regs)
        design_matrix = make_dmtx(
            frametimes,
            paradigm, hrf_model=hrf_model,
            drift_model=drift_model, hfcut=hfcut,
            add_reg_names=add_reg_names,
            add_regs=add_regs
            )

        design_matrices.append(design_matrix)

    # specify contrasts
    contrasts = {}
    n_columns = len(design_matrix.names)
    for i in xrange(paradigm.n_conditions):
        contrasts['%s' % design_matrix.names[2 * i]] = np.eye(n_columns)[2 * i]

    # more interesting contrasts
    contrasts['faces-scrambled'] = contrasts['faces'] - contrasts['scrambled']
    contrasts['scrambled-faces'] = contrasts['scrambled'] - contrasts['faces']
    contrasts['effects_of_interest'] = contrasts[
        'faces'] + contrasts['scrambled']

    # we've thesame contrasts over sessions, so let's replicate
    contrasts = dict((contrast_id, [contrast_val] * 2)
                     for contrast_id, contrast_val in contrasts.iteritems())

    # fit GLM
    print('\r\nFitting a GLM (this takes time)...')
    fmri_glm = FMRILinearModel([load_4D_img(sess_func)
                                for sess_func in data['func']],
                               [dmat.matrix for dmat in design_matrices],
                               mask='compute')
    fmri_glm.fit(do_scaling=True, model='ar1')

    # save computed mask
    mask_path = os.path.join(data['output_dir'], "mask.nii.gz")
    print "Saving mask image %s" % mask_path
    nibabel.save(fmri_glm.mask, mask_path)

    # compute bg unto which activation will be projected
    anat_img = load_vol(data['anat'])

    anat = anat_img.get_data()

    if anat.ndim == 4:
        anat = anat[..., 0]

    anat_affine = anat_img.get_affine()

    print "Computing contrasts .."
    z_maps = {}
    for contrast_id, contrast_val in contrasts.iteritems():
        print "\tcontrast id: %s" % contrast_id
        z_map, t_map, eff_map, var_map = fmri_glm.contrast(
            contrast_val,
            con_id=contrast_id,
            output_z=True,
            output_stat=True,
            output_effects=True,
            output_variance=True,
            )

        # store stat maps to disk
        for dtype, out_map in zip(['z', 't', 'effects', 'variance'],
                                  [z_map, t_map, eff_map, var_map]):
            map_dir = os.path.join(
#.........這裏部分代碼省略.........
開發者ID:fabianp,項目名稱:pypreprocess,代碼行數:103,代碼來源:pipeline_comparisons.py


注:本文中的nipy.modalities.fmri.glm.FMRILinearModel.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。