本文整理匯總了Python中nipy.core.api.Image類的典型用法代碼示例。如果您正苦於以下問題:Python Image類的具體用法?Python Image怎麽用?Python Image使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Image類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_nonaffine
def test_nonaffine():
# resamples an image along a curve through the image.
#
# FIXME: use the reference.evaluate.Grid to perform this nicer
# FIXME: Remove pylab references
def curve(x): # function accept N by 1, returns N by 2
return (np.vstack([5*np.sin(x.T),5*np.cos(x.T)]).T + [52,47])
for names in (('xy', 'ij', 't', 'u'),('ij', 'xy', 't', 's')):
in_names, out_names, tin_names, tout_names = names
g = AffineTransform.from_params(in_names, out_names, np.identity(3))
img = Image(np.ones((100,90)), g)
img.get_data()[50:55,40:55] = 3.
tcoordmap = AffineTransform.from_start_step(
tin_names,
tout_names,
[0],
[np.pi*1.8/100])
ir = resample(img, tcoordmap, curve, (100,))
if gui_review:
import pylab
pylab.figure(num=3)
pylab.imshow(img, interpolation='nearest')
d = curve(np.linspace(0,1.8*np.pi,100))
pylab.plot(d[0], d[1])
pylab.gca().set_ylim([0,99])
pylab.gca().set_xlim([0,89])
pylab.figure(num=4)
pylab.plot(ir.get_data())
示例2: __init__
def __init__(self, data, affine, axis_names, metadata={},
lps=True):
""" Creates a new nipy image with an affine mapping.
Parameters
----------
data : ndarray
ndarray representing the data.
affine : 4x4 ndarray
affine transformation to the reference coordinate system
axis_names : [string]
names of the axes in the coordinate system.
"""
if len(axis_names) < 3:
raise ValueError('XYZImage must have a minimum of 3 axes')
# The first three axes are assumed to be the
# spatial ones
xyz_transform = XYZTransform(affine, axis_names[:3], lps)
nonspatial_names = axis_names[3:]
if nonspatial_names:
nonspatial_affine_transform = AffineTransform.from_start_step(nonspatial_names, nonspatial_names, [0]*(data.ndim-3), [1]*(data.ndim-3))
full_dimensional_affine_transform = cmap_product(xyz_transform, nonspatial_affine_transform)
else:
full_dimensional_affine_transform = xyz_transform
self._xyz_transform = xyz_transform
Image.__init__(self, data, full_dimensional_affine_transform,
metadata=metadata)
示例3: test_slice_from_3d
def test_slice_from_3d():
# Resample a 3d image, returning a zslice, yslice and xslice
#
# This example creates a coordmap that coincides with
# a given z, y, or x slice of an image, and checks that
# resampling agrees with the data in the given slice.
shape = (100,90,80)
g = AffineTransform.from_params('ijk',
'xyz',
np.diag([0.5,0.5,0.5,1]))
img = Image(np.ones(shape), g)
img.get_data()[50:55,40:55,30:33] = 3
I = np.identity(4)
zsl = slices.zslice(26,
((0,49.5), 100),
((0,44.5), 90),
img.reference)
ir = resample(img, zsl, I, (100, 90))
assert_array_almost_equal(ir.get_data(), img[:,:,53].get_data())
ysl = slices.yslice(22,
((0,49.5), 100),
((0,39.5), 80),
img.reference)
ir = resample(img, ysl, I, (100, 80))
assert_array_almost_equal(ir.get_data(), img[:,45,:].get_data())
xsl = slices.xslice(15.5,
((0,44.5), 90),
((0,39.5), 80),
img.reference)
ir = resample(img, xsl, I, (90, 80))
assert_array_almost_equal(ir.get_data(), img[32,:,:].get_data())
示例4: __init__
def __init__(self, data, affine, coord_sys, metadata=None):
""" Creates a new nipy image with an affine mapping.
Parameters
----------
data : ndarray
ndarray representing the data.
affine : 4x4 ndarray
affine transformation to the reference coordinate system
coord_system : string
name of the reference coordinate system.
"""
function_domain = CoordinateSystem(['axis%d' % i for i in range(3)],
name=coord_sys)
function_range = CoordinateSystem(['x','y','z'], name='world')
spatial_coordmap = AffineTransform(function_domain, function_range,
affine)
nonspatial_names = ['axis%d' % i for i in range(3, data.ndim)]
if nonspatial_names:
nonspatial_coordmap = AffineTransform.from_start_step(nonspatial_names, nonspatial_names, [0]*(data.ndim-3), [1]*(data.ndim-3))
full_coordmap = cmap_product(coordmap, nonspatial_coordmap)
else:
full_coordmap = spatial_coordmap
self._spatial_coordmap = spatial_coordmap
self.coord_sys = coord_sys
Image.__init__(self, data, full_coordmap)
if metadata is not None:
self.metadata = metadata
示例5: get_nifti
def get_nifti(self, topo_view, base_nifti=None, **kwargs):
"""
Process the nifti
Parameters
----------
topo_view: array-like
Topological view to create nifti. 3D.
Returns
-------
image: nipy image
Nifti image from topological view.
"""
if base_nifti is None:
assert self.base_nifti is not None, ("`base.nii` not in dataset "
"directory. You may need to "
"reprocess.")
base_nifti = self.base_nifti
image = Image.from_image(base_nifti, data=topo_view)
else:
if isinstance(base_nifti, str):
base_nifti = load_image(base_nifti)
base2new_affine = np.linalg.inv(
base_nifti.affine).dot(self.base_nifti.affine)
cmap = AffineTransform("kji", "zxy", base2new_affine)
image = Image.from_image(base_nifti, data=topo_view, coordmap=cmap)
return image
示例6: load
def load(filename):
"""Load an image from the given filename.
Parameters
----------
filename : string
Should resolve to a complete filename path.
Returns
-------
image : An `Image` object
If successful, a new `Image` object is returned.
See Also
--------
save_image : function for saving images
fromarray : function for creating images from numpy arrays
Examples
--------
>>> from nipy.io.api import load_image
>>> from nipy.testing import anatfile
>>> img = load_image(anatfile)
>>> img.shape
(33, 41, 25)
"""
img = formats.load(filename)
aff = img.get_affine()
shape = img.get_shape()
hdr = img.get_header()
# Get info from NIFTI header, if present, to tell which axes are
# which. This is a NIFTI-specific kludge, that might be abstracted
# out into the image backend in a general way. Similarly for
# getting zooms
# axis_renames is a dictionary: dict([(int, str)])
# that has keys in range(3)
# the axes of the Image are renamed from 'ijk'
# using these names
try:
axis_renames = hdr.get_axis_renames()
except (TypeError, AttributeError):
axis_renames = {}
try:
zooms = hdr.get_zooms()
except AttributeError:
zooms = np.ones(len(shape))
# affine_transform is a 3-d transform
affine_transform3d, affine_transform = \
affine_transform_from_array(aff, 'ijk', pixdim=zooms[3:])
img = Image(img.get_data(), affine_transform.renamed_domain(axis_renames))
img.header = hdr
return img
示例7: test_labels1
def test_labels1():
img = load_image(funcfile)
data = img.get_data()
parcelmap = Image(img[0].get_data(), AfT("kji", "zyx", np.eye(4)))
parcelmap = (parcelmap.get_data() * 100).astype(np.int32)
v = 0
for i, d in axis0_generator(data, parcels(parcelmap)):
v += d.shape[1]
assert_equal(v, parcelmap.size)
示例8: test_resample2d2
def test_resample2d2():
g = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.5,1]))
i = Image(np.ones((100,90)), g)
i.get_data()[50:55,40:55] = 3.
a = np.identity(3)
a[:2,-1] = 4.
A = np.identity(2)
b = np.ones(2)*4
ir = resample(i, i.coordmap, (A, b), (100,90))
assert_array_almost_equal(ir.get_data()[42:47,32:47], 3.)
示例9: test_resample2d3
def test_resample2d3():
# Same as test_resample2d, only a different way of specifying
# the transform: here it is an (A,b) pair
g = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.5,1]))
i = Image(np.ones((100,90)), g)
i.get_data()[50:55,40:55] = 3.
a = np.identity(3)
a[:2,-1] = 4.
ir = resample(i, i.coordmap, a, (100,90))
assert_array_almost_equal(ir.get_data()[42:47,32:47], 3.)
示例10: load
def load(filename):
"""Load an image from the given filename.
Parameters
----------
filename : string
Should resolve to a complete filename path.
Returns
-------
image : An `Image` object
If successful, a new `Image` object is returned.
See Also
--------
save_image : function for saving images
fromarray : function for creating images from numpy arrays
Examples
--------
>>> from nipy.io.api import load_image
>>> from nipy.testing import anatfile
>>> img = load_image(anatfile)
>>> img.shape
(33, 41, 25)
"""
img = nib.load(filename)
aff = img.get_affine()
shape = img.get_shape()
hdr = img.get_header()
# If the header implements it, get a list of names, one per axis,
# and put this into the coordinate map. In fact, no image format
# implements this at the moment, so in practice, the following code
# is not currently called.
axis_renames = {}
try:
axis_names = hdr.axis_names
except AttributeError:
pass
else:
# axis_renames is a dictionary: dict([(int, str)]) that has keys
# in range(3). The axes of the Image are renamed from 'ijk' using
# these names
for i in range(min([len(axis_names), 3])):
name = axis_names[i]
if not (name is None or name == ''):
axis_renames[i] = name
zooms = hdr.get_zooms()
# affine_transform is a 3-d transform
affine_transform3d, affine_transform = \
affine_transform_from_array(aff, 'ijk', pixdim=zooms[3:])
img = Image(img.get_data(), affine_transform.renamed_domain(axis_renames))
img.header = hdr
return img
示例11: test_rotate2d
def test_rotate2d():
# Rotate an image in 2d on a square grid, should result in transposed image
g = AffineTransform.from_params('ij', 'xy', np.diag([0.7,0.5,1]))
g2 = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.7,1]))
i = Image(np.ones((100,100)), g)
# This sets the image data by writing into the array
i.get_data()[50:55,40:55] = 3.
a = np.array([[0,1,0],
[1,0,0],
[0,0,1]], np.float)
ir = resample(i, g2, a, (100, 100))
assert_array_almost_equal(ir.get_data().T, i.get_data())
示例12: test_2d_from_3d
def test_2d_from_3d():
# Resample a 3d image on a 2d affine grid
# This example creates a coordmap that coincides with
# the 10th slice of an image, and checks that
# resampling agrees with the data in the 10th slice.
shape = (100,90,80)
g = AffineTransform.from_params('ijk', 'xyz', np.diag([0.5,0.5,0.5,1]))
i = Image(np.ones(shape), g)
i.get_data()[50:55,40:55,30:33] = 3.
a = np.identity(4)
g2 = ArrayCoordMap.from_shape(g, shape)[10]
ir = resample(i, g2.coordmap, a, g2.shape)
assert_array_almost_equal(ir.get_data(), i[10].get_data())
示例13: test_resample2d1
def test_resample2d1():
# Tests the same as test_resample2d, only using a callable instead of
# an AffineTransform instance
g = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.5,1]))
i = Image(np.ones((100,90)), g)
i.get_data()[50:55,40:55] = 3.
a = np.identity(3)
a[:2,-1] = 4.
A = np.identity(2)
b = np.ones(2)*4
def mapper(x):
return np.dot(x, A.T) + b
ir = resample(i, i.coordmap, mapper, (100,90))
assert_array_almost_equal(ir.get_data()[42:47,32:47], 3.)
示例14: test_rollaxis
def test_rollaxis():
data = np.random.standard_normal((3,4,7,5))
im = Image(data, AffineTransform.from_params('ijkl', 'xyzt', np.diag([1,2,3,4,1])))
# for the inverse we must specify an integer
yield assert_raises, ValueError, image.rollaxis, im, 'i', True
# Check that rollaxis preserves diagonal affines, as claimed
yield assert_almost_equal, image.rollaxis(im, 1).affine, np.diag([2,1,3,4,1])
yield assert_almost_equal, image.rollaxis(im, 2).affine, np.diag([3,1,2,4,1])
yield assert_almost_equal, image.rollaxis(im, 3).affine, np.diag([4,1,2,3,1])
# Check that ambiguous axes raise an exception
# 'l' appears both as an axis and a reference coord name
# and in different places
im_amb = Image(data, AffineTransform.from_params('ijkl', 'xylt', np.diag([1,2,3,4,1])))
yield assert_raises, ValueError, image.rollaxis, im_amb, 'l'
# But if it's unambiguous, then
# 'l' can appear both as an axis and a reference coord name
im_unamb = Image(data, AffineTransform.from_params('ijkl', 'xyzl', np.diag([1,2,3,4,1])))
im_rolled = image.rollaxis(im_unamb, 'l')
yield assert_almost_equal, im_rolled.get_data(), \
im_unamb.get_data().transpose([3,0,1,2])
for i, o, n in zip('ijkl', 'xyzt', range(4)):
im_i = image.rollaxis(im, i)
im_o = image.rollaxis(im, o)
im_n = image.rollaxis(im, n)
yield assert_almost_equal, im_i.get_data(), \
im_o.get_data()
yield assert_almost_equal, im_i.affine, \
im_o.affine
yield assert_almost_equal, im_n.get_data(), \
im_o.get_data()
for _im in [im_n, im_o, im_i]:
im_n_inv = image.rollaxis(_im, n, inverse=True)
yield assert_almost_equal, im_n_inv.affine, \
im.affine
yield assert_almost_equal, im_n_inv.get_data(), \
im.get_data()
示例15: test_rotate3d
def test_rotate3d():
# Rotate / transpose a 3d image on a non-square grid
g = AffineTransform.from_params('ijk', 'xyz', np.diag([0.5,0.6,0.7,1]))
g2 = AffineTransform.from_params('ijk', 'xyz', np.diag([0.5,0.7,0.6,1]))
shape = (100,90,80)
i = Image(np.ones(shape), g)
i.get_data()[50:55,40:55,30:33] = 3.
a = np.array([[1,0,0,0],
[0,0,1,0],
[0,1,0,0],
[0,0,0,1.]])
ir = resample(i, g2, a, (100,80,90))
assert_array_almost_equal(np.transpose(ir.get_data(), (0,2,1)),
i.get_data())