本文整理匯總了Python中nipy.core.api.AffineTransform類的典型用法代碼示例。如果您正苦於以下問題:Python AffineTransform類的具體用法?Python AffineTransform怎麽用?Python AffineTransform使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了AffineTransform類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_nonaffine
def test_nonaffine():
# resamples an image along a curve through the image.
#
# FIXME: use the reference.evaluate.Grid to perform this nicer
# FIXME: Remove pylab references
def curve(x): # function accept N by 1, returns N by 2
return np.vstack([5 * np.sin(x.T), 5 * np.cos(x.T)]).T + [52, 47]
for names in (("xy", "ij", "t", "u"), ("ij", "xy", "t", "s")):
in_names, out_names, tin_names, tout_names = names
g = AffineTransform.from_params(in_names, out_names, np.identity(3))
img = Image(np.ones((100, 90)), g)
img[50:55, 40:55] = 3.0
tcoordmap = AffineTransform.from_start_step(tin_names, tout_names, [0], [np.pi * 1.8 / 100])
ir = resample(img, tcoordmap, curve, (100,))
if gui_review:
import pylab
pylab.figure(num=3)
pylab.imshow(img, interpolation="nearest")
d = curve(np.linspace(0, 1.8 * np.pi, 100))
pylab.plot(d[0], d[1])
pylab.gca().set_ylim([0, 99])
pylab.gca().set_xlim([0, 89])
pylab.figure(num=4)
pylab.plot(np.asarray(ir))
示例2: test_rotate2d
def test_rotate2d():
# Rotate an image in 2d on a square grid, should result in transposed image
g = AffineTransform.from_params('ij', 'xy', np.diag([0.7,0.5,1]))
g2 = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.7,1]))
i = Image(np.ones((100,100)), g)
# This sets the image data by writing into the array
i.get_data()[50:55,40:55] = 3.
a = np.array([[0,1,0],
[1,0,0],
[0,0,1]], np.float)
ir = resample(i, g2, a, (100, 100))
assert_array_almost_equal(ir.get_data().T, i.get_data())
示例3: setUp
def setUp(self):
names = ['zspace', 'yspace', 'xspace']
shape = (10,20,30)
self.img = Image(np.zeros(shape),
AffineTransform.from_start_step(names, names, (0,)*3, (1,)*3))
self.img2 = Image(np.ones(shape),
AffineTransform.from_start_step(names, names, (0,)*3, (1,)*3))
shape = (3,5,4)
self.img3 = Image(np.zeros(shape),
AffineTransform.from_start_step(names, names, (0,)*3, (1,)*3))
self.img4 = Image(np.zeros(shape),
AffineTransform.from_start_step(names, names, (0,)*3, (1,)*3))
示例4: test_rotate3d
def test_rotate3d():
# Rotate / transpose a 3d image on a non-square grid
g = AffineTransform.from_params('ijk', 'xyz', np.diag([0.5,0.6,0.7,1]))
g2 = AffineTransform.from_params('ijk', 'xyz', np.diag([0.5,0.7,0.6,1]))
shape = (100,90,80)
i = Image(np.ones(shape), g)
i.get_data()[50:55,40:55,30:33] = 3.
a = np.array([[1,0,0,0],
[0,0,1,0],
[0,1,0,0],
[0,0,0,1.]])
ir = resample(i, g2, a, (100,80,90))
assert_array_almost_equal(np.transpose(ir.get_data(), (0,2,1)),
i.get_data())
示例5: test_rotate2d2
def test_rotate2d2():
# Rotate an image in 2d on a non-square grid,
# should result in transposed image
g = AffineTransform.from_params("ij", "xy", np.diag([0.7, 0.5, 1]))
g2 = AffineTransform.from_params("ij", "xy", np.diag([0.5, 0.7, 1]))
i = Image(np.ones((100, 80)), g)
i[50:55, 40:55] = 3.0
a = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]], np.float)
ir = resample(i, g2, a, (80, 100))
yield assert_array_almost_equal, np.asarray(ir).T, i
示例6: test_rotate3d
def test_rotate3d():
# Rotate / transpose a 3d image on a non-square grid
g = AffineTransform.from_params("ijk", "xyz", np.diag([0.5, 0.6, 0.7, 1]))
g2 = AffineTransform.from_params("ijk", "xyz", np.diag([0.5, 0.7, 0.6, 1]))
shape = (100, 90, 80)
i = Image(np.ones(shape), g)
i[50:55, 40:55, 30:33] = 3.0
a = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1.0]])
ir = resample(i, g2, a, (100, 80, 90))
yield assert_array_almost_equal, np.transpose(np.asarray(ir), (0, 2, 1)), i
示例7: test_slice_from_3d
def test_slice_from_3d():
# Resample a 3d image, returning a zslice, yslice and xslice
#
# This example creates a coordmap that coincides with
# a given z, y, or x slice of an image, and checks that
# resampling agrees with the data in the given slice.
shape = (100,90,80)
g = AffineTransform.from_params('ijk',
'xyz',
np.diag([0.5,0.5,0.5,1]))
img = Image(np.ones(shape), g)
img.get_data()[50:55,40:55,30:33] = 3
I = np.identity(4)
zsl = slices.zslice(26,
((0,49.5), 100),
((0,44.5), 90),
img.reference)
ir = resample(img, zsl, I, (100, 90))
assert_array_almost_equal(ir.get_data(), img[:,:,53].get_data())
ysl = slices.yslice(22,
((0,49.5), 100),
((0,39.5), 80),
img.reference)
ir = resample(img, ysl, I, (100, 80))
assert_array_almost_equal(ir.get_data(), img[:,45,:].get_data())
xsl = slices.xslice(15.5,
((0,44.5), 90),
((0,39.5), 80),
img.reference)
ir = resample(img, xsl, I, (90, 80))
assert_array_almost_equal(ir.get_data(), img[32,:,:].get_data())
示例8: __init__
def __init__(self, data, affine, coord_sys, metadata=None):
""" Creates a new nipy image with an affine mapping.
Parameters
----------
data : ndarray
ndarray representing the data.
affine : 4x4 ndarray
affine transformation to the reference coordinate system
coord_system : string
name of the reference coordinate system.
"""
function_domain = CoordinateSystem(['axis%d' % i for i in range(3)],
name=coord_sys)
function_range = CoordinateSystem(['x','y','z'], name='world')
spatial_coordmap = AffineTransform(function_domain, function_range,
affine)
nonspatial_names = ['axis%d' % i for i in range(3, data.ndim)]
if nonspatial_names:
nonspatial_coordmap = AffineTransform.from_start_step(nonspatial_names, nonspatial_names, [0]*(data.ndim-3), [1]*(data.ndim-3))
full_coordmap = cmap_product(coordmap, nonspatial_coordmap)
else:
full_coordmap = spatial_coordmap
self._spatial_coordmap = spatial_coordmap
self.coord_sys = coord_sys
Image.__init__(self, data, full_coordmap)
if metadata is not None:
self.metadata = metadata
示例9: __init__
def __init__(self, data, affine, axis_names, metadata={},
lps=True):
""" Creates a new nipy image with an affine mapping.
Parameters
----------
data : ndarray
ndarray representing the data.
affine : 4x4 ndarray
affine transformation to the reference coordinate system
axis_names : [string]
names of the axes in the coordinate system.
"""
if len(axis_names) < 3:
raise ValueError('XYZImage must have a minimum of 3 axes')
# The first three axes are assumed to be the
# spatial ones
xyz_transform = XYZTransform(affine, axis_names[:3], lps)
nonspatial_names = axis_names[3:]
if nonspatial_names:
nonspatial_affine_transform = AffineTransform.from_start_step(nonspatial_names, nonspatial_names, [0]*(data.ndim-3), [1]*(data.ndim-3))
full_dimensional_affine_transform = cmap_product(xyz_transform, nonspatial_affine_transform)
else:
full_dimensional_affine_transform = xyz_transform
self._xyz_transform = xyz_transform
Image.__init__(self, data, full_dimensional_affine_transform,
metadata=metadata)
示例10: test_resample2d2
def test_resample2d2():
g = AffineTransform.from_params("ij", "xy", np.diag([0.5, 0.5, 1]))
i = Image(np.ones((100, 90)), g)
i[50:55, 40:55] = 3.0
a = np.identity(3)
a[:2, -1] = 4.0
A = np.identity(2)
b = np.ones(2) * 4
ir = resample(i, i.coordmap, (A, b), (100, 90))
yield assert_array_almost_equal, ir[42:47, 32:47], 3.0
示例11: test_resample2d2
def test_resample2d2():
g = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.5,1]))
i = Image(np.ones((100,90)), g)
i.get_data()[50:55,40:55] = 3.
a = np.identity(3)
a[:2,-1] = 4.
A = np.identity(2)
b = np.ones(2)*4
ir = resample(i, i.coordmap, (A, b), (100,90))
assert_array_almost_equal(ir.get_data()[42:47,32:47], 3.)
示例12: test_resample2d3
def test_resample2d3():
# Same as test_resample2d, only a different way of specifying
# the transform: here it is an (A,b) pair
g = AffineTransform.from_params('ij', 'xy', np.diag([0.5,0.5,1]))
i = Image(np.ones((100,90)), g)
i.get_data()[50:55,40:55] = 3.
a = np.identity(3)
a[:2,-1] = 4.
ir = resample(i, i.coordmap, a, (100,90))
assert_array_almost_equal(ir.get_data()[42:47,32:47], 3.)
示例13: test_resample2d3
def test_resample2d3():
# Same as test_resample2d, only a different way of specifying
# the transform: here it is an (A,b) pair
g = AffineTransform.from_params("ij", "xy", np.diag([0.5, 0.5, 1]))
i = Image(np.ones((100, 90)), g)
i[50:55, 40:55] = 3.0
a = np.identity(3)
a[:2, -1] = 4.0
ir = resample(i, i.coordmap, a, (100, 90))
yield assert_array_almost_equal, ir[42:47, 32:47], 3.0
示例14: test_rotate2d3
def test_rotate2d3():
# Another way to rotate/transpose the image, similar to
# test_rotate2d2 and test_rotate2d except the world of the
# output coordmap are the same as the world of the
# original image. That is, the data is transposed on disk, but the
# output coordinates are still 'x,'y' order, not 'y', 'x' order as
# above
# this functionality may or may not be used a lot. if data is to
# be transposed but one wanted to keep the NIFTI order of output
# coords this would do the trick
g = AffineTransform.from_params("xy", "ij", np.diag([0.5, 0.7, 1]))
i = Image(np.ones((100, 80)), g)
i[50:55, 40:55] = 3.0
a = np.identity(3)
g2 = AffineTransform.from_params("xy", "ij", np.array([[0, 0.5, 0], [0.7, 0, 0], [0, 0, 1]]))
ir = resample(i, g2, a, (80, 100))
v2v = compose(g.inverse(), g2)
yield assert_array_almost_equal, np.asarray(ir).T, i
示例15: test_rotate2d3
def test_rotate2d3():
# Another way to rotate/transpose the image, similar to
# test_rotate2d2 and test_rotate2d, except the world of the
# output coordmap is the same as the world of the
# original image. That is, the data is transposed on disk, but the
# output coordinates are still 'x,'y' order, not 'y', 'x' order as
# above
# this functionality may or may not be used a lot. if data is to
# be transposed but one wanted to keep the NIFTI order of output
# coords this would do the trick
g = AffineTransform.from_params('xy', 'ij', np.diag([0.5,0.7,1]))
i = Image(np.ones((100,80)), g)
# This sets the image data by writing into the array
i.get_data()[50:55,40:55] = 3.
a = np.identity(3)
g2 = AffineTransform.from_params('xy', 'ij', np.array([[0,0.5,0],
[0.7,0,0],
[0,0,1]]))
ir = resample(i, g2, a, (80,100))
assert_array_almost_equal(ir.get_data().T, i.get_data())