當前位置: 首頁>>代碼示例>>Python>>正文


Python Net.build方法代碼示例

本文整理匯總了Python中net.Net.build方法的典型用法代碼示例。如果您正苦於以下問題:Python Net.build方法的具體用法?Python Net.build怎麽用?Python Net.build使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在net.Net的用法示例。


在下文中一共展示了Net.build方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: predict

# 需要導入模塊: from net import Net [as 別名]
# 或者: from net.Net import build [as 別名]
def predict(weights_path, image_path):
    '''
    Function: loads a trained model and predicts the class of given image
    Input: weights_path (.h5 file, prefer adding absolute path)
           image_path (image to predict, prefer adding absolute path)
    Returns: none
    '''
    model = Net.build(32, 32, 3, weights_path)
    
    image = load_image(image_path, show=True) # load image, rescale to 0 to 1
    class_ = model.predict(image) # predict the output, returns 36 length array
    print("Detected: ", class_[0]) # print what is predicted
    output_indice = -1 # set it initially to -1
    
    # get class index having maximum predicted score
    for i in range(36):
        if(i == 0):
            max = class_[0][i]
            output_indice = 0
        else:
            if(class_[0][i] > max):
                max = class_[0][i]
                output_indice = i
    
    # append 26 characters (A to Z) to list characters
    characters = []
    for i in range(65, 65+26):
        characters.append(chr(i))
    # if output indice > 9 (means characters)
    if(output_indice > 9):
        final_result = characters[(output_indice - 9) - 1]
        print("Predicted: ", final_result)
        print("value: ", max) # print predicted score
    # else it's a digit, print directly
    else:
        print("Predicted: ", output_indice)
        print("value: ", max) # print it's predicted score
開發者ID:ty01csbaidu,項目名稱:learnopencv,代碼行數:39,代碼來源:make_predictions.py

示例2: print

# 需要導入模塊: from net import Net [as 別名]
# 或者: from net.Net import build [as 別名]
# Dimensions of our images
img_width, img_height = 32, 32

# 3 channel image
no_of_channels = 3

# train data Directory
train_data_dir = 'train/' 
# test data Directory
validation_data_dir = 'test/' 

epochs = 80
batch_size = 32

#initialize model
model = Net.build(width = img_width, height = img_height, depth = no_of_channels)
print('building done')
# Compile model
rms = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0)
print('optimizing done')

model.compile(loss='categorical_crossentropy',
              optimizer=rms,
              metrics=['accuracy'])

print('compiling')

# this is the augmentation configuration used for training
# horizontal_flip = False, as we need to retain Characters
train_datagen = ImageDataGenerator(
    featurewise_center=True,
開發者ID:ty01csbaidu,項目名稱:learnopencv,代碼行數:33,代碼來源:train_model.py


注:本文中的net.Net.build方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。