當前位置: 首頁>>代碼示例>>Python>>正文


Python Callbacks.add_callback方法代碼示例

本文整理匯總了Python中neon.callbacks.callbacks.Callbacks.add_callback方法的典型用法代碼示例。如果您正苦於以下問題:Python Callbacks.add_callback方法的具體用法?Python Callbacks.add_callback怎麽用?Python Callbacks.add_callback使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在neon.callbacks.callbacks.Callbacks的用法示例。


在下文中一共展示了Callbacks.add_callback方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
def train(args, hyper_params, model, opt, data_set):
    # setup cost function as CrossEntropy
    cost = GeneralizedCost(costfunc=CrossEntropyMulti())
    
    callbacks = Callbacks(model, **args.callback_args)
    callbacks.add_callback(EpochEndCallback())
    
    data_set.set_mode('train')
    model.fit(data_set, optimizer=opt,
              num_epochs=hyper_params.num_epochs, cost=cost, callbacks=callbacks)
    
    return
開發者ID:623401157,項目名稱:ModelZoo,代碼行數:14,代碼來源:transfer_learning.py

示例2: range

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
layers.append(Conv((2, 2, nchan), strides=2, **common))
for idx in range(16):
    layers.append(Conv((3, 3, nchan), **common))
    if nchan > 16:
        nchan /= 2
for idx in range(15):
    layers.append(Deconv((3, 3, nchan), **common))
layers.append(Deconv((4, 4, nchan), strides=2, **common))
layers.append(Deconv((3, 3, 1), init=init, activation=Logistic(shortcut=True)))

cost = GeneralizedCost(costfunc=SumSquared())
mlp = Model(layers=layers)
callbacks = Callbacks(mlp, train, **args.callback_args)
evaluator = Evaluator(callbacks.callback_data, mlp, test, imwidth, args.epochs,
                      args.data_dir, point_num)
callbacks.add_callback(evaluator)
mlp.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost,
        callbacks=callbacks)
train.exit_batch_provider()

preds = evaluator.get_outputs()
paths = np.genfromtxt(os.path.join(args.test_data_dir, 'val_file.csv'),
                      dtype=str)[1:]
basenames = [os.path.basename(path) for path in paths]
filenames = [path.split(',')[0] for path in basenames]
filenames.sort()
content = []
for i, filename in enumerate(filenames):
    item = {
        "annotations":
        [
開發者ID:pitseli,項目名稱:deepwhales,代碼行數:33,代碼來源:localizer.py

示例3: StepSchedule

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
                 weights=[1, 1, 1])

# setup optimizer
schedule_w = StepSchedule(step_config=[5], change=[0.001 / 10])
schedule_b = StepSchedule(step_config=[5], change=[0.002 / 10])

opt_w = GradientDescentMomentum(0.001, 0.9, wdecay=0.0005, schedule=schedule_w)
opt_b = GradientDescentMomentum(0.002, 0.9, wdecay=0.0005, schedule=schedule_b)
opt_skip = GradientDescentMomentum(0.0, 0.0)

optimizer = MultiOptimizer({'default': opt_w, 'Bias': opt_b,
                            'skip': opt_skip, 'skip_bias': opt_skip})

# if training a new model, seed the image model conv layers with pre-trained weights
# otherwise, just load the model file
if args.model_file is None:
    util.load_vgg_all_weights(model, args.data_dir)

callbacks = Callbacks(model, eval_set=train_set, **args.callback_args)
callbacks.add_callback(TrainMulticostCallback())

# model.benchmark(train_set, optimizer=optimizer, cost=cost)
model.fit(train_set, optimizer=optimizer, cost=cost, num_epochs=args.epochs, callbacks=callbacks)

# Scale the bbox regression branch linear layer weights before saving the model
model = util.scale_bbreg_weights(model, [0.0, 0.0, 0.0, 0.0],
                                 [0.1, 0.1, 0.2, 0.2], train_set.num_classes)

if args.save_path is not None:
    save_obj(model.serialize(keep_states=True), args.save_path)
開發者ID:Jokeren,項目名稱:neon,代碼行數:32,代碼來源:train.py

示例4: Callbacks

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
if args.model_file:
    import os
    assert os.path.exists(args.model_file), '%s not found' % args.model_file
    mlp.load_weights(args.model_file)

# configure callbacks
callbacks = Callbacks(mlp, train, output_file=args.output_file)

if args.validation_freq:
    class TopKMetrics(Callback):
        def __init__(self, valid_set, epoch_freq=args.validation_freq):
            super(TopKMetrics, self).__init__(epoch_freq=epoch_freq)
            self.valid_set = valid_set

        def on_epoch_end(self, epoch):
            self.valid_set.reset()
            allmetrics = TopKMisclassification(k=5)
            stats = mlp.eval(self.valid_set, metric=allmetrics)
            print ", ".join(allmetrics.metric_names) + ": " + ", ".join(map(str, stats.flatten()))

    callbacks.add_callback(TopKMetrics(test))

if args.save_path:
    checkpoint_schedule = range(1, args.epochs)
    callbacks.add_serialize_callback(checkpoint_schedule, args.save_path, history=2)

mlp.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)

test.exit_batch_provider()
train.exit_batch_provider()
開發者ID:sunclx,項目名稱:neon,代碼行數:32,代碼來源:alexnet.py

示例5: Pooling

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
          Pooling(3, strides=2)]


# Structure of the deep residual part of the network:
# args.depth modules of 2 convolutional layers each at feature map depths
# of 64, 128, 256, 512
nfms = list(itt.chain.from_iterable(
    [itt.repeat(2**(x + 6), r) for x, r in enumerate(stages)]))
strides = [-1] + [1 if cur == prev else 2 for cur,
                  prev in zip(nfms[1:], nfms[:-1])]

for nfm, stride in zip(nfms, strides):
    layers.append(module_factory(nfm, stride))

layers.append(Pooling('all', op='avg'))
layers.append(Conv(**conv_params(1, train.nclass, relu=False)))
layers.append(Activation(Softmax()))
model = Model(layers=layers)

weight_sched = Schedule([30, 60], 0.1)
opt = GradientDescentMomentum(0.1, 0.9, wdecay=0.0001, schedule=weight_sched)

# configure callbacks
valmetric = TopKMisclassification(k=5)
callbacks = Callbacks(model, eval_set=test, metric=valmetric, **args.callback_args)
callbacks.add_callback(BatchNormTuneCallback(tune), insert_pos=0)

cost = GeneralizedCost(costfunc=CrossEntropyMulti())
model.fit(train, optimizer=opt, num_epochs=args.epochs,
          cost=cost, callbacks=callbacks)
開發者ID:JediKoder,項目名稱:neon,代碼行數:32,代碼來源:i1k_msra.py

示例6: MNIST

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
random_seed = args.rng_seed if args.rng_seed else 0

# load up the mnist data set, padding images to size 32
dataset = MNIST(path=args.data_dir, sym_range=True, size=32, shuffle=True)
train = dataset.train_iter

# create a GAN
model, cost = create_model(dis_model=args.dmodel, gen_model=args.gmodel,
                           cost_type='wasserstein', noise_type='normal',
                           im_size=32, n_chan=1, n_noise=128,
                           n_gen_ftr=args.n_gen_ftr, n_dis_ftr=args.n_dis_ftr,
                           depth=4, n_extra_layers=4,
                           batch_norm=True, dis_iters=5,
                           wgan_param_clamp=0.01, wgan_train_sched=True)

# setup optimizer
optimizer = RMSProp(learning_rate=2e-4, decay_rate=0.99, epsilon=1e-8)

# configure callbacks
callbacks = Callbacks(model, **args.callback_args)
fdir = ensure_dirs_exist(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'results/'))
fname = os.path.splitext(os.path.basename(__file__))[0] +\
    '_[' + datetime.now().strftime('%Y-%m-%d-%H-%M-%S') + ']'
im_args = dict(filename=os.path.join(fdir, fname), hw=32,
               num_samples=args.batch_size, nchan=1, sym_range=True)
callbacks.add_callback(GANPlotCallback(**im_args))
callbacks.add_callback(GANCostCallback())

# model fit
model.fit(train, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
開發者ID:StevenLOL,項目名稱:neon,代碼行數:32,代碼來源:mnist_wgan.py

示例7: Model

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
model = Model(layers=SSD(ssd_config=train_config['ssd_config'], dataset=train_set))

cost = MBoxLoss(num_classes=train_set.num_classes)

if args.model_file is None:
    load_vgg_weights(model, cache_dir)
else:
    model.load_params(args.model_file)

if args.lr_step is None:
    args.lr_step = [40, 80, 120]

base_lr = 0.0001 * be.bsz * args.lr_scale
schedule = Schedule(args.lr_step, 0.1)
opt_w = GradientDescentMomentum(base_lr, momentum_coef=0.9, wdecay=0.0005, schedule=schedule)
opt_b = GradientDescentMomentum(base_lr, momentum_coef=0.9, schedule=schedule)
opt = MultiOptimizer({'default': opt_w, 'Bias': opt_b})

# hijack the eval callback arg here
eval_freq = args.callback_args.pop('eval_freq')
callbacks = Callbacks(model, **args.callback_args)
callbacks.add_callback(MAP_Callback(eval_set=val_set, epoch_freq=eval_freq))

if args.image_sample_dir is not None:
    callbacks.add_callback(ssd_image_callback(eval_set=val_set, image_dir=args.image_sample_dir,
                                              epoch_freq=eval_freq, num_images=args.num_images,
                                              classes=val_config['class_names']))

model.fit(train_set, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
開發者ID:NervanaSystems,項目名稱:neon,代碼行數:31,代碼來源:train.py

示例8: Model

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
#final model

mlp = Model(layers=layers)

logger.info("model construction complete...")

"""
model training and classification accurate rate
"""
#model training and results

callbacks = Callbacks(mlp,train, args, eval_set=valid,metric=Misclassification())

#add lost and metric call backs facilitate more diagnostic

callbacks.add_callback(MetricCallback(mlp,eval_set=train,metric=Misclassification(),epoch_freq=args.evaluation_freq))
callbacks.add_callback(MetricCallback(mlp,eval_set=valid,metric=Misclassification(),epoch_freq=args.evaluation_freq))
#run the model

mlp.fit(train, optimizer=opt_gdm, num_epochs=args.epochs, cost=cost, callbacks=callbacks)

#final classification accuracy

t_mis_rate=mlp.eval(train, metric=Misclassification())*100
v_mis_rate=mlp.eval(valid, metric=Misclassification())*100
#test_mis_rate=mlp.eval(test, metric=Misclassification())*100

print ('Train Misclassification error = %.1f%%' %t_mis_rate)
print ('Valid Miscladdifcaiton error = %.1f%%' %v_mis_rate)
#print ('Test Miscladdifcaiton error = %.1f%%' %test_mis_rate)
開發者ID:poijqwef,項目名稱:trackit,代碼行數:32,代碼來源:hurricane_classify_trainvalid.py

示例9: main

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
def main():
    # setup the model and run for num_epochs saving the last state only
    # this is at the top so that the be is generated
    model = gen_model(args.backend)

    # setup data iterators
    (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir)
    NN = batch_size*5  # avoid partial mini batches
    if args.backend == 'nervanacpu' or args.backend == 'cpu':
        # limit data since cpu backend runs slower
        train = ArrayIterator(X_train[:NN], y_train[:NN],
                              nclass=nclass, lshape=(1, 28, 28))
        valid = ArrayIterator(X_test[:NN], y_test[:NN],
                              nclass=nclass, lshape=(1, 28, 28))
    else:
        train = ArrayIterator(X_train, y_train, nclass=nclass, lshape=(1, 28, 28))
        valid = ArrayIterator(X_test, y_test, nclass=nclass, lshape=(1, 28, 28))

    # serialization related
    cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    opt_gdm = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)

    checkpoint_model_path = os.path.join('./', 'test_oneshot.pkl')
    checkpoint_schedule = 1  # save at every step

    callbacks = Callbacks(model)
    callbacks.add_callback(SerializeModelCallback(checkpoint_model_path,
                                                  checkpoint_schedule,
                                                  history=2))

    # run the fit all the way through saving a checkpoint e
    model.fit(train,
              optimizer=opt_gdm,
              num_epochs=num_epochs,
              cost=cost,
              callbacks=callbacks)

    # setup model with same random seed run epoch by epoch
    # serializing and deserializing at each step
    model = gen_model(args.backend)
    cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    opt_gdm = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)

    # reset data iterators
    train.reset()
    valid.reset()

    checkpoint_model_path = os.path.join('./', 'test_manyshot.pkl')
    checkpoint_schedule = 1  # save at evey step
    for epoch in range(num_epochs):
        # _0 points to state at end of epoch 0
        callbacks = Callbacks(model)
        callbacks.add_callback(SerializeModelCallback(checkpoint_model_path,
                                                      checkpoint_schedule,
                                                      history=num_epochs))
        model.fit(train,
                  optimizer=opt_gdm,
                  num_epochs=epoch+1,
                  cost=cost,
                  callbacks=callbacks)

        # load saved file
        prts = os.path.splitext(checkpoint_model_path)
        fn = prts[0] + '_%d' % epoch + prts[1]
        model.load_params(fn)  # load the saved weights

    # compare test_oneshot_<num_epochs>.pkl to test_manyshot_<num_epochs>.pkl
    if not compare_model_pickles('test_oneshot_%d.pkl' % (num_epochs-1),
                                 'test_manyshot_%d.pkl' % (num_epochs-1)):
        print 'No Match'
        sys.exit(1)
    else:
        print 'Match'
開發者ID:Jicheng-Yan,項目名稱:neon,代碼行數:75,代碼來源:serialization_check.py

示例10: Conv

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
          Conv((1, 1, 16), **conv),
          Pooling(8, op="avg"),
          Activation(Softmax())]

cost = GeneralizedCost(costfunc=CrossEntropyMulti())

mlp = Model(layers=layers)

if args.model_file:
    import os
    assert os.path.exists(args.model_file), '%s not found' % args.model_file
    mlp.load_weights(args.model_file)

# configure callbacks
callbacks = Callbacks(mlp, train_set, eval_set=valid_set, **args.callback_args)

if args.deconv:
    callbacks.add_deconv_callback(train_set, valid_set)

callbacks.add_callback(
    MetricCallback(
        valid_set,
        Misclassification()
        )
    )

mlp.fit(train_set, optimizer=opt_gdm, num_epochs=num_epochs, cost=cost, callbacks=callbacks)
import logging
logger = logging.getLogger(__name__)
logger.critical('Misclassification error = %.1f%%' % (mlp.eval(valid_set, metric=Misclassification())*100))
開發者ID:IrinaMax,項目名稱:sigopt-examples,代碼行數:32,代碼來源:cifar10_allcnn_newargs.py

示例11: GradientDescentMomentum

# 需要導入模塊: from neon.callbacks.callbacks import Callbacks [as 別名]
# 或者: from neon.callbacks.callbacks.Callbacks import add_callback [as 別名]
     opt_biases = GradientDescentMomentum(args.rate_init[1], args.momentum[1], 
                                          schedule=weight_sched, stochastic_round=args.rounding)
     opt_fixed = GradientDescentMomentum(0.0, 1.0, wdecay=0.0)
     opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases, 'DOG': opt_fixed})
 
     # configure cost and test metrics
     cost = GeneralizedCost(costfunc=(CrossEntropyBinary() \
         if train.parser.independent_labels else CrossEntropyMulti()))
     metric = EMMetric(oshape=test.parser.oshape, use_softmax=not train.parser.independent_labels) if test else None
 
     # configure callbacks
     if not args.neon_progress: 
         args.callback_args['progress_bar'] = False
     callbacks = Callbacks(model, eval_set=test, metric=metric, **args.callback_args)
     if not args.neon_progress: 
         callbacks.add_callback(EMEpochCallback(args.callback_args['eval_freq'],train.nmacrobatches),insert_pos=None)
     # xxx - thought of making this an option but not clear that it slows anything down?
     #callbacks.add_hist_callback() # xxx - not clear what information this conveys
     if args.save_best_path:
         callbacks.add_save_best_state_callback(args.save_best_path)
     
     model.fit(train, optimizer=opt, num_epochs=num_epochs, cost=cost, callbacks=callbacks)
     print('Model training complete for %d epochs!' % (args.epochs,))
     #test.stop(); train.stop()
 
 elif args.write_output:
     # write_output mode, must have model loaded
         
     if args.data_config:
         test = EMDataIterator(args.data_config, write_output=args.write_output,
                               chunk_skip_list=args.chunk_skip_list, dim_ordering=args.dim_ordering,
開發者ID:elhuhdron,項目名稱:emdrp,代碼行數:33,代碼來源:emneon.py


注:本文中的neon.callbacks.callbacks.Callbacks.add_callback方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。