當前位置: 首頁>>代碼示例>>Python>>正文


Python NFoldPartitioner.get_space方法代碼示例

本文整理匯總了Python中mvpa2.generators.partition.NFoldPartitioner.get_space方法的典型用法代碼示例。如果您正苦於以下問題:Python NFoldPartitioner.get_space方法的具體用法?Python NFoldPartitioner.get_space怎麽用?Python NFoldPartitioner.get_space使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mvpa2.generators.partition.NFoldPartitioner的用法示例。


在下文中一共展示了NFoldPartitioner.get_space方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_gnbsearchlight_permutations

# 需要導入模塊: from mvpa2.generators.partition import NFoldPartitioner [as 別名]
# 或者: from mvpa2.generators.partition.NFoldPartitioner import get_space [as 別名]
def test_gnbsearchlight_permutations():
    import mvpa2
    from mvpa2.base.node import ChainNode
    from mvpa2.clfs.gnb import GNB
    from mvpa2.generators.base import  Repeater
    from mvpa2.generators.partition import NFoldPartitioner, OddEvenPartitioner
    #import mvpa2.generators.permutation
    #reload(mvpa2.generators.permutation)
    from mvpa2.generators.permutation import AttributePermutator
    from mvpa2.testing.datasets import datasets
    from mvpa2.measures.base import CrossValidation
    from mvpa2.measures.gnbsearchlight import sphere_gnbsearchlight
    from mvpa2.measures.searchlight import sphere_searchlight
    from mvpa2.mappers.fx import mean_sample
    from mvpa2.misc.errorfx import mean_mismatch_error
    from mvpa2.clfs.stats import MCNullDist
    from mvpa2.testing.tools import assert_raises, ok_, assert_array_less

    # mvpa2.debug.active = ['APERM', 'SLC'] #, 'REPM']
    # mvpa2.debug.metrics += ['pid']
    count = 10
    nproc = 1 + int(mvpa2.externals.exists('pprocess'))
    ds = datasets['3dsmall'].copy()
    ds.fa['voxel_indices'] = ds.fa.myspace

    slkwargs = dict(radius=3, space='voxel_indices',  enable_ca=['roi_sizes'],
                    center_ids=[1, 10, 70, 100])

    mvpa2.seed(mvpa2._random_seed)
    clf  = GNB()
    splt = NFoldPartitioner(cvtype=2, attr='chunks')

    repeater   = Repeater(count=count)
    permutator = AttributePermutator('targets', limit={'partitions': 1}, count=1)

    null_sl = sphere_gnbsearchlight(clf, ChainNode([splt, permutator], space=splt.get_space()),
                                    postproc=mean_sample(), errorfx=mean_mismatch_error,
                                    **slkwargs)

    distr_est = MCNullDist(repeater, tail='left', measure=null_sl,
                           enable_ca=['dist_samples'])
    sl = sphere_gnbsearchlight(clf, splt,
                               reuse_neighbors=True,
                               null_dist=distr_est, postproc=mean_sample(),
                               errorfx=mean_mismatch_error,
                               **slkwargs)
    if __debug__:                         # assert is done only without -O mode
        assert_raises(NotImplementedError, sl, ds)

    # "ad-hoc searchlights can't handle yet varying targets across partitions"
    if False:
        # after above limitation is removed -- enable
        sl_map = sl(ds)
        sl_null_prob = sl.ca.null_prob.samples.copy()

    mvpa2.seed(mvpa2._random_seed)
    ### 'normal' Searchlight
    clf  = GNB()
    splt = NFoldPartitioner(cvtype=2, attr='chunks')
    repeater   = Repeater(count=count)
    permutator = AttributePermutator('targets', limit={'partitions': 1}, count=1)
    # rng=np.random.RandomState(0)) # to trigger failure since the same np.random state
    # would be reused across all pprocesses
    null_cv = CrossValidation(clf, ChainNode([splt, permutator], space=splt.get_space()),
                              postproc=mean_sample())
    null_sl_normal = sphere_searchlight(null_cv, nproc=nproc, **slkwargs)
    distr_est_normal = MCNullDist(repeater, tail='left', measure=null_sl_normal,
                           enable_ca=['dist_samples'])

    cv = CrossValidation(clf, splt, errorfx=mean_mismatch_error,
                         enable_ca=['stats'], postproc=mean_sample() )
    sl = sphere_searchlight(cv, nproc=nproc, null_dist=distr_est_normal, **slkwargs)
    sl_map_normal = sl(ds)
    sl_null_prob_normal = sl.ca.null_prob.samples.copy()

    # For every feature -- we should get some variance in estimates In
    # case of failure they are all really close to each other (up to
    # numerical precision), so variance will be close to 0
    assert_array_less(-np.var(distr_est_normal.ca.dist_samples.samples[0],
                              axis=1), -1e-5)
    for s in distr_est_normal.ca.dist_samples.samples[0]:
        ok_(len(np.unique(s)) > 1)
開發者ID:beausievers,項目名稱:PyMVPA,代碼行數:84,代碼來源:test_usecases.py

示例2: setup_classifier

# 需要導入模塊: from mvpa2.generators.partition import NFoldPartitioner [as 別名]
# 或者: from mvpa2.generators.partition.NFoldPartitioner import get_space [as 別名]
def setup_classifier(**kwargs):

    '''
    Thinked!
    '''
    for arg in kwargs:
        if arg == 'clf_type':
            clf_type = kwargs[arg]
        if arg == 'fsel':
            f_sel = kwargs[arg]
        if arg == 'cv_type':
            cv_approach = kwargs[arg]
        if arg == 'cv_folds':
            if np.int(kwargs[arg]) == 0:
                cv_type = np.float(kwargs[arg])
            else:
                cv_type = np.int(kwargs[arg])
        if arg == 'permutations':
            permutations = np.int(kwargs[arg])
        if arg == 'cv_attribute':
            attribute = kwargs[arg]

    cv_n = cv_type

    ################# Classifier #######################
    if clf_type == 'SVM':
        clf = LinearCSVMC(C=1, probability=1, enable_ca=['probabilities'])
    elif clf_type == 'GNB':
        clf = GNB()
    elif clf_type == 'LDA':
        clf = LDA()
    elif clf_type == 'QDA':
        clf = QDA()
    elif clf_type == 'SMLR':
        clf = SMLR()
    elif clf_type == 'RbfSVM':
        sk_clf = SVC(gamma=0.1, C=1)
        clf = SKLLearnerAdapter(sk_clf, enable_ca=['probabilities'])
    elif clf_type == 'GP':
        clf = GPR()
    else:
        clf = LinearCSVMC(C=1, probability=1, enable_ca=['probabilities'])
    
    ############## Feature Selection #########################
    if f_sel == 'True':
        logger.info('Feature Selection selected.')
        fsel = SensitivityBasedFeatureSelection(OneWayAnova(),  
                                                FractionTailSelector(0.05,
                                                                     mode='select',
                                                                     tail='upper'))
        fclf = FeatureSelectionClassifier(clf, fsel)

    elif f_sel == 'Fixed':
        logger.info('Fixed Feature Selection selected.')
        fsel = SensitivityBasedFeatureSelection(OneWayAnova(),  
                                                FixedNElementTailSelector(100,
                                                                     mode='select',
                                                                     tail='upper'))
        fclf = FeatureSelectionClassifier(clf, fsel)
        
    elif f_sel == 'PCA':
        from mvpa2.mappers.skl_adaptor import SKLTransformer
        from sklearn.decomposition import PCA
        logger.info('Fixed Feature Selection selected.')
        fsel = SKLTransformer(PCA(n_components=45))
        
        fclf = FeatureSelectionClassifier(clf, fsel)
    else:

        fclf = clf

    ######################### Permutations #############################

    if permutations != 0:
        if __debug__:
            debug.active += ["STATMC"]
        repeater = Repeater(count=permutations)
        permutator = AttributePermutator('targets', limit={'partitions': 1}, 
                                         count=1)
        partitioner = NFoldPartitioner(cvtype=cv_n, attr=attribute)
        null_cv = CrossValidation(
                                  clf,
                                  ChainNode([partitioner, permutator],
                                            space=partitioner.get_space()),
                                  errorfx=mean_mismatch_error)

        distr_est = MCNullDist(repeater, tail='left', measure=null_cv,
                               enable_ca=['dist_samples'])
        #postproc = mean_sample()
    else:
        distr_est = None
        #postproc = None

    ########################################################
    if cv_approach == 'n_fold':
        if cv_type != 0:
            splitter_used = NFoldPartitioner(cvtype=cv_type, attr=attribute)
        else:
            splitter_used = NFoldPartitioner(cvtype=1, attr=attribute)
    else:
#.........這裏部分代碼省略.........
開發者ID:robbisg,項目名稱:mvpa_itab_wu,代碼行數:103,代碼來源:main_wu.py


注:本文中的mvpa2.generators.partition.NFoldPartitioner.get_space方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。