本文整理匯總了Python中mvpa2.clfs.meta.SplitClassifier.get_sensitivity_analyzer方法的典型用法代碼示例。如果您正苦於以下問題:Python SplitClassifier.get_sensitivity_analyzer方法的具體用法?Python SplitClassifier.get_sensitivity_analyzer怎麽用?Python SplitClassifier.get_sensitivity_analyzer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類mvpa2.clfs.meta.SplitClassifier
的用法示例。
在下文中一共展示了SplitClassifier.get_sensitivity_analyzer方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __test_matthias_question
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def __test_matthias_question(self):
rfe_clf = LinearCSVMC(C=1)
rfesvm_split = SplitClassifier(rfe_clf)
clf = \
FeatureSelectionClassifier(
clf = LinearCSVMC(C=1),
feature_selection = RFE(
sensitivity_analyzer = rfesvm_split.get_sensitivity_analyzer(
combiner=first_axis_mean,
transformer=np.abs),
transfer_error=ConfusionBasedError(
rfesvm_split,
confusion_state="confusion"),
stopping_criterion=FixedErrorThresholdStopCrit(0.20),
feature_selector=FractionTailSelector(
0.2, mode='discard', tail='lower'),
update_sensitivity=True))
no_permutations = 1000
permutator = AttributePermutator('targets', count=no_permutations)
cv = CrossValidation(clf, NFoldPartitioner(),
null_dist=MCNullDist(permutator, tail='left'),
enable_ca=['stats'])
error = cv(datasets['uni2small'])
self.assertTrue(error < 0.4)
self.assertTrue(cv.ca.null_prob < 0.05)
示例2: test_splitclf_sensitivities
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def test_splitclf_sensitivities():
datasets = [normal_feature_dataset(perlabel=100, nlabels=2,
nfeatures=4,
nonbogus_features=[0, i + 1],
snr=1, nchunks=2)
for i in xrange(2)]
sclf = SplitClassifier(SMLR(),
NFoldPartitioner())
analyzer = sclf.get_sensitivity_analyzer()
senses1 = analyzer(datasets[0])
senses2 = analyzer(datasets[1])
for senses in senses1, senses2:
# This should be False when comparing two folds
assert_false(np.allclose(senses.samples[0],
senses.samples[2]))
assert_false(np.allclose(senses.samples[1],
senses.samples[3]))
# Moreover with new data we should have got different results
# (i.e. it must retrained correctly)
for s1, s2 in zip(senses1, senses2):
assert_false(np.allclose(s1, s2))
# and we should have "selected" "correct" voxels
for i, senses in enumerate((senses1, senses2)):
assert_equal(set(np.argsort(np.max(np.abs(senses), axis=0))[-2:]),
set((0, i + 1)))
示例3: test_split_clf
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def test_split_clf(self):
# set up the classifier
sclf = SplitClassifier(SMLR(),
NFoldPartitioner())
analyzer = sclf.get_sensitivity_analyzer()
senses = analyzer(self.dataset)
# This should be False when comparing two folds
assert_false(np.allclose(senses.samples[0],senses.samples[2]))
示例4: test_split_clf_on_chainpartitioner
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def test_split_clf_on_chainpartitioner(self):
# pretty much a smoke test for #156
ds = datasets['uni2small']
part = ChainNode([NFoldPartitioner(cvtype=1),
Balancer(attr='targets', count=2,
limit='partitions', apply_selection=True)])
partitions = list(part.generate(ds))
sclf = SplitClassifier(sample_clf_lin, part, enable_ca=['stats', 'splits'])
sclf.train(ds)
pred = sclf.predict(ds)
assert_equal(len(pred), len(ds)) # rudimentary check
assert_equal(len(sclf.ca.splits), len(partitions))
assert_equal(len(sclf.clfs), len(partitions))
# now let's do sensitivity analyzer just in case
sclf.untrain()
sensana = sclf.get_sensitivity_analyzer()
sens = sensana(ds)
# basic check that sensitivities varied across splits
from mvpa2.mappers.fx import FxMapper
sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens)
assert_true(np.any(sens_stds != 0))
示例5: __test_fspipeline_with_split_classifier
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def __test_fspipeline_with_split_classifier(self, basic_clf):
#basic_clf = LinearNuSVMC()
multi_clf = MulticlassClassifier(clf=basic_clf)
#svm_weigths = LinearSVMWeights(svm)
# Proper RFE: aggregate sensitivities across multiple splits,
# but also due to multi class those need to be aggregated
# somehow. Transfer error here should be 'leave-1-out' error
# of split classifier itself
sclf = SplitClassifier(clf=basic_clf)
rfe = RFE(sensitivity_analyzer=
sclf.get_sensitivity_analyzer(
enable_ca=["sensitivities"]),
transfer_error=trans_error,
feature_selector=FeatureSelectionPipeline(
[FractionTailSelector(0.5),
FixedNElementTailSelector(1)]),
train_pmeasure=True)
# and we get sensitivity analyzer which works on splits and uses
# sensitivity
selected_features = rfe(self.dataset)
示例6: test_rfe
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def test_rfe(self, clf):
# sensitivity analyser and transfer error quantifier use the SAME clf!
sens_ana = clf.get_sensitivity_analyzer(postproc=maxofabs_sample())
pmeasure = ProxyMeasure(clf, postproc=BinaryFxNode(mean_mismatch_error,
'targets'))
cvmeasure = CrossValidation(clf, NFoldPartitioner(),
errorfx=mean_mismatch_error,
postproc=mean_sample())
rfesvm_split = SplitClassifier(clf, OddEvenPartitioner())
# explore few recipes
for rfe, data in [
# because the clf is already trained when computing the sensitivity
# map, prevent retraining for transfer error calculation
# Use absolute of the svm weights as sensitivity
(RFE(sens_ana,
pmeasure,
Splitter('train'),
fselector=FixedNElementTailSelector(1),
train_pmeasure=False),
self.get_data()),
# use cross-validation within training to get error for the stopping point
# but use full training data to derive sensitivity
(RFE(sens_ana,
cvmeasure,
Repeater(2), # give the same full dataset to sens_ana and cvmeasure
fselector=FractionTailSelector(
0.70,
mode='select', tail='upper'),
train_pmeasure=True),
normal_feature_dataset(perlabel=20, nchunks=5, nfeatures=200,
nonbogus_features=[0, 1], snr=1.5)),
# use cross-validation (via SplitClassifier) and get mean
# of normed sensitivities across those splits
(RFE(rfesvm_split.get_sensitivity_analyzer(
postproc=ChainMapper([ FxMapper('features', l2_normed),
FxMapper('samples', np.mean),
FxMapper('samples', np.abs)])),
ConfusionBasedError(rfesvm_split, confusion_state='stats'),
Repeater(2), # we will use the same full cv-training dataset
fselector=FractionTailSelector(
0.50,
mode='select', tail='upper'),
stopping_criterion=NBackHistoryStopCrit(BestDetector(), 10),
train_pmeasure=False, # we just extract it from existing confusion
update_sensitivity=True),
normal_feature_dataset(perlabel=28, nchunks=7, nfeatures=200,
nonbogus_features=[0, 1], snr=1.5))
]:
# prep data
# data = datasets['uni2medium']
data_nfeatures = data.nfeatures
rfe.train(data)
resds = rfe(data)
# fail if orig datasets are changed
self.assertTrue(data.nfeatures == data_nfeatures)
# check that the features set with the least error is selected
if len(rfe.ca.errors):
e = np.array(rfe.ca.errors)
if isinstance(rfe._fselector, FixedNElementTailSelector):
self.assertTrue(resds.nfeatures == data_nfeatures - e.argmin())
else:
imin = np.argmin(e)
if 'does_feature_selection' in clf.__tags__:
# if clf is smart it might figure it out right away
assert_array_less( imin, len(e) )
else:
# in this case we can even check if we had actual
# going down/up trend... although -- why up???
self.assertTrue( 1 < imin < len(e) - 1 )
else:
self.assertTrue(resds.nfeatures == data_nfeatures)
# silly check if nfeatures is in decreasing order
nfeatures = np.array(rfe.ca.nfeatures).copy()
nfeatures.sort()
self.assertTrue( (nfeatures[::-1] == rfe.ca.nfeatures).all() )
# check if history has elements for every step
self.assertTrue(set(rfe.ca.history)
== set(range(len(np.array(rfe.ca.errors)))))
# Last (the largest number) can be present multiple times even
# if we remove 1 feature at a time -- just need to stop well
# in advance when we have more than 1 feature left ;)
self.assertTrue(rfe.ca.nfeatures[-1]
== len(np.where(rfe.ca.history
==max(rfe.ca.history))[0]))
示例7: test_analyzer_with_split_classifier
# 需要導入模塊: from mvpa2.clfs.meta import SplitClassifier [as 別名]
# 或者: from mvpa2.clfs.meta.SplitClassifier import get_sensitivity_analyzer [as 別名]
def test_analyzer_with_split_classifier(self, clfds):
"""Test analyzers in split classifier
"""
clf, ds = clfds # unroll the tuple
# We need to skip some LARSes here
_sclf = str(clf)
if 'LARS(' in _sclf and "type='stepwise'" in _sclf:
# ADD KnownToFail thingie from NiPy
return
# To don't waste too much time testing lets limit to 3 splits
nsplits = 3
partitioner = NFoldPartitioner(count=nsplits)
mclf = SplitClassifier(clf=clf,
partitioner=partitioner,
enable_ca=['training_stats',
'stats'])
sana = mclf.get_sensitivity_analyzer(# postproc=absolute_features(),
pass_attr=['fa.nonbogus_targets'],
enable_ca=["sensitivities"])
ulabels = ds.uniquetargets
nlabels = len(ulabels)
# Can't rely on splitcfg since count-limit is done in __call__
assert(nsplits == len(list(partitioner.generate(ds))))
sens = sana(ds)
assert('nonbogus_targets' in sens.fa) # were they passsed?
# TODO: those few do not expose biases
if not len(set(clf.__tags__).intersection(('lars', 'glmnet', 'gpr'))):
assert('biases' in sens.sa)
# print sens.sa.biases
# It should return either ...
# nlabels * nsplits
req_nsamples = [ nlabels * nsplits ]
if nlabels == 2:
# A single sensitivity in case of binary
req_nsamples += [ nsplits ]
else:
# and for pairs in case of multiclass
req_nsamples += [ (nlabels * (nlabels - 1) / 2) * nsplits ]
# and for 1-vs-1 embedded within Multiclass operating on
# pairs (e.g. SMLR)
req_nsamples += [req_nsamples[-1] * 2]
# Also for regression_based -- they can do multiclass
# but only 1 sensitivity is provided
if 'regression_based' in clf.__tags__:
req_nsamples += [ nsplits ]
# # of features should correspond
self.assertEqual(sens.shape[1], ds.nfeatures)
# # of samples/sensitivities should also be reasonable
self.assertTrue(sens.shape[0] in req_nsamples)
# Check if labels are present
self.assertTrue('splits' in sens.sa)
self.assertTrue('targets' in sens.sa)
# should be 1D -- otherwise dtype object
self.assertTrue(sens.sa.targets.ndim == 1)
sens_ulabels = sens.sa['targets'].unique
# Some labels might be pairs(tuples) so ndarray would be of
# dtype object and we would need to get them all
if sens_ulabels.dtype is np.dtype('object'):
sens_ulabels = np.unique(
reduce(lambda x, y: x + y, [list(x) for x in sens_ulabels]))
assert_array_equal(sens_ulabels, ds.sa['targets'].unique)
errors = [x.percent_correct
for x in sana.clf.ca.stats.matrices]
# lets go through all sensitivities and see if we selected the right
# features
#if 'meta' in clf.__tags__ and len(sens.samples[0].nonzero()[0])<2:
if '5%' in clf.descr \
or (nlabels > 2 and 'regression_based' in clf.__tags__):
# Some meta classifiers (5% of ANOVA) are too harsh ;-)
# if we get less than 2 features with on-zero sensitivities we
# cannot really test
# Also -- regression based classifiers performance for multiclass
# is expected to suck in general
return
if cfg.getboolean('tests', 'labile', default='yes'):
for conf_matrix in [sana.clf.ca.training_stats] \
+ sana.clf.ca.stats.matrices:
self.assertTrue(
conf_matrix.percent_correct >= 70,
msg="We must have trained on each one more or " \
"less correctly. Got %f%% correct on %d labels" %
(conf_matrix.percent_correct,
nlabels))
# Since now we have per split and possibly per label -- lets just find
# mean per each feature per label across splits
sensm = FxMapper('samples', lambda x: np.sum(x),
uattrs=['targets']).forward(sens)
sensgm = maxofabs_sample().forward(sensm) # global max of abs of means
#.........這裏部分代碼省略.........