當前位置: 首頁>>代碼示例>>Python>>正文


Python Array.get_obj方法代碼示例

本文整理匯總了Python中multiprocessing.Array.get_obj方法的典型用法代碼示例。如果您正苦於以下問題:Python Array.get_obj方法的具體用法?Python Array.get_obj怎麽用?Python Array.get_obj使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在multiprocessing.Array的用法示例。


在下文中一共展示了Array.get_obj方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: shared_np_array

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
def shared_np_array(shape, data=None, integer=False):
    """Create a new numpy array that resides in shared memory.

    Parameters
    ----------
    shape : tuple of ints
        The shape of the new array.
    data : numpy.array
        Data to copy to the new array. Has to have the same shape.
    integer : boolean
        Whether to use an integer array. Defaults to False which means
        float array.
    """
    size = np.prod(shape)
    if integer:
        array = Array(ctypes.c_int64, int(size))
        np_array = np.frombuffer(array.get_obj(), dtype="int64")
    else:
        array = Array(ctypes.c_double, int(size))
        np_array = np.frombuffer(array.get_obj())
    np_array = np_array.reshape(shape)

    if data is not None:
        if len(shape) != len(data.shape):
            raise ValueError("`data` must have the same dimensions"
                             "as the created array.")
        same = all(x == y for x, y in zip(shape, data.shape))
        if not same:
            raise ValueError("`data` must have the same shape"
                             "as the created array.")
        np_array[:] = data

    return np_array
開發者ID:cdiener,項目名稱:cobrapy,代碼行數:35,代碼來源:sampling.py

示例2: get_predict

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
def get_predict(args, ortho, model):
    xp = cuda.cupy if args.gpu >= 0 else np
    args.h_limit, args.w_limit = ortho.shape[0], ortho.shape[1]
    args.canvas_h = args.h_limit
    args.canvas_w = args.w_limit

    # to share 'canvas' between different threads
    canvas_ = Array(ctypes.c_float, args.canvas_h * args.canvas_w * args.channels)
    canvas = np.ctypeslib.as_array(canvas_.get_obj())
    canvas = canvas.reshape((args.canvas_h, args.canvas_w, args.channels))

    # prepare queues and threads
    patch_queue = Queue(maxsize=5)
    preds_queue = Queue()
    patch_worker = Process(target=create_minibatch, args=(args, ortho, patch_queue))
    canvas_worker = Process(target=tile_patches, args=(args, canvas, preds_queue))
    patch_worker.start()
    canvas_worker.start()

    while True:
        minibatch = patch_queue.get()
        if minibatch is None:
            break
        minibatch = Variable(xp.asarray(minibatch, dtype=xp.float32), volatile=True)
        preds = model(minibatch, None).data
        if args.gpu >= 0:
            preds = xp.asnumpy(preds)
        [preds_queue.put(pred) for pred in preds]

    preds_queue.put(None)
    patch_worker.join()
    canvas_worker.join()

    return canvas
開發者ID:lucmichalski,項目名稱:ssai-cnn,代碼行數:36,代碼來源:predict_offset.py

示例3: steps_multiprocessing

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
    def steps_multiprocessing(self, number_of_steps, plot, plot_every_n):
        """ 
        Equal to take_steps but using multiprocesing.

        Parameters
        ----------
        number_of_steps : float
                 Total number of time steps.
        plot : object
                 make_plot Object.
        plot_every_n : float
                 Every few time steps are going on a plot.
        """
        
        shared_array_base = Array(ctypes.c_double, len(self.bodies)*2)
        shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
        shared_array = shared_array.reshape(2, len(self.bodies))

        counter = Value(ctypes.c_int64, 0)
        end_plot = Value(ctypes.c_int8, 1)

        old_counter = 1
        rk_fun = Process(target = self.rk_fun_task, args=(number_of_steps, plot_every_n, shared_array, end_plot, counter))
        plot_fun = Process(target = self.plot_fun_task, args=(old_counter, shared_array, end_plot, counter, plot))

        rk_fun.start()
        plot_fun.start()

        rk_fun.join()
        plot_fun.join()
開發者ID:fnbellomo,項目名稱:GProject,代碼行數:32,代碼來源:Gravitation.py

示例4: conv_single_image

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
def conv_single_image(image):
    shared_array_base = Array(ctypes.c_double, image.size)
    shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
    shared_array = shared_array.reshape(image.shape)
    shared_array[:] = image

    return shared_array
開發者ID:CellProfiler,項目名稱:cellstar,代碼行數:9,代碼來源:snake_grow.py

示例5: calculatePearsonCorrelationMatrixMultiprocessing

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
def calculatePearsonCorrelationMatrixMultiprocessing(matrix, axis=0, symmetrical=True, getpvalmat=False):

    if axis == 1:
        matrix = matrix.T

    nRows = matrix.shape[0]

    # create shared array that can be used from multiple processes
    output_r_arr = Array(ctypes.c_double, matrix.shape[0] * matrix.shape[0])
    # then in each new process create a new numpy array using:
    output_r = np.frombuffer(output_r_arr.get_obj())  # mp_arr and arr share the same memory
    # make it two-dimensional
    output_r = output_r.reshape((matrix.shape[0], matrix.shape[0]))  # b and arr share the same memory
    # output_r = np.zeros((nRows,nRows))  # old version

    output_p_arr = Array(ctypes.c_double, matrix.shape[0] * matrix.shape[0])
    output_p = np.frombuffer(output_p_arr.get_obj())
    output_p = output_p.reshape((matrix.shape[0], matrix.shape[0]))

    print 'Calculating Pearson R for each row, multithreaded'
    print mp.cpu_count(), 'processes in pool'

    pool = None
    try:
        pool = mp.Pool(mp.cpu_count(),
                       initializer=_init_pool,
                       initargs=(matrix, output_r_arr, output_p_arr,
                                 nRows, symmetrical))

        # bar = tqdm(total=nRows*nRows/2)
        # tqdm.write('Calculating Pearson R for each row, multithreaded')
        for result in tqdm(pool.imap_unordered(_f, range(0, nRows)), total=nRows):
            # bar.update(result)
            pass
        # bar.close()
    finally:  # To make sure processes are closed in the end, even if errors happen
        pool.close()
        pool.join()

    print output_r

    if getpvalmat:
        return output_r, output_p
    else:
        return output_r
開發者ID:themantalope,項目名稱:maakclusterutils,代碼行數:47,代碼來源:cluster_utils.py

示例6: initialize

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
 def initialize(self, nChannels, nSamples, windowSize=1, nptype='float32'):
     '''
     Initializes the buffer with a new raw array
     
     Parameters
     ----------
     nChannels : int
         dimensionality of a single sample
     nSamples : int
         the buffer capacity in samples
     windowSize : int, optional
         optional, the size of the window to be used for reading the
         data. The pocket of the this size will be created
     nptype : string, optional
         the type of the data to be stored
                        
     '''
     self.__initialized = True
     
     # checking parameters
     if nChannels < 1:
         self.logger.warning('nChannels must be a positive integer, setting to 1')
         nChannels = 1
     if nSamples < 1:
         self.logger.warning('nSamples must be a positive integer, setting to 1')
         nSamples = 1
     if windowSize < 1:
         self.logger.warning('wondowSize must be a positive integer, setting to 1')
         windowSize = 1
     
     # initializing
     sizeBytes = c.sizeof(BufferHeader) + \
                 (nSamples + windowSize) * nChannels * np.dtype(nptype).itemsize
     
     raw = Array('c', sizeBytes)
     hdr = BufferHeader.from_buffer(raw.get_obj())
     
     hdr.bufSizeBytes = nSamples * nChannels * np.dtype(nptype).itemsize
     hdr.pocketSizeBytes = windowSize * nChannels * np.dtype(nptype).itemsize
     hdr.dataType = datatypes.get_code(nptype)
     hdr.nChannels = nChannels
     hdr.nSamplesWritten = 0
     
     self.initialize_from_raw(raw.get_obj())
開發者ID:belevtsoff,項目名稱:rdaclient.py,代碼行數:46,代碼來源:ringbuffer.py

示例7: initialize

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
    def initialize(self, n_channels, n_samples, np_dtype='float32'):
        """Initializes the buffer with a new array."""
        logger.debug('Initializing {}x{} {} buffer.'.format(n_channels, n_samples, np_dtype))

        # check parameters
        if n_channels < 1 or n_samples < 1:
            logger.error('n_channels and n_samples must be a positive integer')
            raise SharedBufferError(1)

        size_bytes = ct.sizeof(SharedBufferHeader) + n_samples * n_channels * np.dtype(np_dtype).itemsize
        raw = Array('c', size_bytes)
        hdr = SharedBufferHeader.from_buffer(raw.get_obj())

        hdr.bufSizeBytes = size_bytes - ct.sizeof(SharedBufferHeader)
        hdr.dataType = DataTypes.get_code(np_dtype)
        hdr.nChannels = n_channels
        hdr.nSamples = n_samples
        hdr.position = 0

        self.initialize_from_raw(raw.get_obj())
開發者ID:wonkoderverstaendige,項目名稱:ophys_io,代碼行數:22,代碼來源:SharedBuffer.py

示例8: load_data

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
def load_data(args, input_q, minibatch_q):
    c = args.channel
    s = args.size
    d = args.joint_num * 2

    input_data_base = Array(ctypes.c_float, args.batchsize * c * s * s)
    input_data = np.ctypeslib.as_array(input_data_base.get_obj())
    input_data = input_data.reshape((args.batchsize, c, s, s))

    label_base = Array(ctypes.c_float, args.batchsize * d)
    label = np.ctypeslib.as_array(label_base.get_obj())
    label = label.reshape((args.batchsize, d))

    x_queue, o_queue = Queue(), Queue()
    workers = [Process(target=transform,
                       args=(args, x_queue, args.datadir, args.fname_index,
                             args.joint_index, o_queue))
               for _ in range(args.batchsize)]
    for w in workers:
        w.start()

    while True:
        x_batch = input_q.get()
        if x_batch is None:
            break

        # data augmentation
        for x in x_batch:
            x_queue.put(x)
        j = 0
        while j != len(x_batch):
            a, b = o_queue.get()
            input_data[j] = a
            label[j] = b
            j += 1
        minibatch_q.put([input_data, label])

    for _ in range(args.batchsize):
        x_queue.put(None)
    for w in workers:
        w.join()
開發者ID:cybermatt,項目名稱:deeppose,代碼行數:43,代碼來源:train.py

示例9: CameraStreamer

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
class CameraStreamer(Process):
  def __init__(self, stayAliveObj=None, frameCountObj=None, imageObj=None, imageShapeObj=None):
    Process.__init__(self)
    print "CameraStreamer.__init__(): [pid: {}, OS pid: {}]".format(self.pid, os.getpid())
    # * Store references to and/or create shared objects
    self.stayAliveObj = stayAliveObj if stayAliveObj is not None else Value(c_bool, True)
    self.frameCountObj = frameCountObj if frameCountObj is not None else Value('i', 0)
    self.imageShapeObj = imageShapeObj if imageShapeObj is not None else Array('i', (camera_frame_height, camera_frame_width, camera_frame_depth))
    if imageObj is not None:
      # ** Use supplied shared image object
      self.imageObj = imageObj
    else:
      # ** Create shared image object
      image = np.zeros((camera_frame_height, camera_frame_width, camera_frame_depth), dtype=np.uint8)  # create an image
      imageShape = image.shape  # store original shape
      imageSize = image.size  # store original size (in bytes)
      image.shape = imageSize  # flatten numpy array
      self.imageObj = Array(c_ubyte, image)  # create a synchronized shared array object
  
  def run(self):
    print "CameraStreamer.run(): [pid: {}, OS pid: {}]".format(self.pid, os.getpid())
    # * Interpret shared objects properly (NOTE this needs to happen in the child process)
    self.image = ctypeslib.as_array(self.imageObj.get_obj())  # get flattened image array
    self.image.shape = ctypeslib.as_array(self.imageShapeObj.get_obj())  # restore original shape
    
    # * Open camera and set desired capture properties
    self.camera = cv2.VideoCapture(0)
    if self.camera.isOpened():
      result_width = self.camera.set(cv.CV_CAP_PROP_FRAME_WIDTH, camera_frame_width)
      result_height = self.camera.set(cv.CV_CAP_PROP_FRAME_HEIGHT, camera_frame_height)
      print "CameraStreamer.run(): Camera frame size set to {width}x{height} (result: {result_width}, {result_height})".format(width=camera_frame_width, height=camera_frame_height, result_width=result_width, result_height=result_height)
    else:
      print "CameraStreamer.run(): Unable to open camera; aborting..."
      self.stayAliveObj.value = False
      return
    
    # * Keep reading frames into shared image until stopped or read error occurs
    while self.stayAliveObj.value:
      try:
        #print "CameraStreamer.run(): Frame # {}, stay alive? {}".format(self.frameCountObj.value, self.stayAliveObj.value)  # [debug]
        isOkay, frame = self.camera.read()
        if not isOkay:
          self.stayAliveObj.value = False
        self.frameCountObj.value = self.frameCountObj.value + 1
        self.image[:] = frame
      except KeyboardInterrupt:
        self.stayAliveObj.value = False
    
    # * Clean-up
    self.camera.release()
開發者ID:napratin,項目名稱:lumos,代碼行數:52,代碼來源:camstream.py

示例10: _calculate_phi

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
    def _calculate_phi(self, x):
        C = self.workers
        neurons = self.neurons
        mu = self.mu
        sigmas = self.sigmas
        phi = self.phi = None
        n = self.n


        def heavy_lifting(c, phi):
            s = jobs[c][1] - jobs[c][0]
            for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
                for j in xrange(neurons):
                    # phi[i, j] = metrics(x[i,:], mu[j])**3)
                    # phi[i, j] = plateSpine(x[i,:], mu[j]))
                    # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
                    phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
                    # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
                if k % 1000 == 0:
                    percent = true_divide(k, s)*100
                    print c, ': {:2.2f}%'.format(percent)
            print c, ': Done'
        
        # distributing the work between 4 workers
        shared_array = Array(c_double, n * neurons)
        phi = frombuffer(shared_array.get_obj())
        phi = phi.reshape((n, neurons))

        jobs = []
        workers = []

        p = n / C
        m = n % C
        for c in range(C):
            jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
            worker = Process(target = heavy_lifting, args = (c, phi))
            workers.append(worker)
            worker.start()

        for worker in workers:
            worker.join()

        return phi
開發者ID:eugeniashurko,項目名稱:rbfnnpy,代碼行數:45,代碼來源:rbfnnpy.py

示例11: Buffer

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
class Buffer(object):
    def __init__(self, size=1000, data_type="int32"):
        self.data_type = data_type
        self.head = Value("i", 0)
        self.ring_buffer = Array(data_type[0], range(size))
        self.size = size
        for i in range(size):
            self.ring_buffer[i] = 0  # probably really slow but not done often

    def get_head_value(self):
        return self.ring_buffer[self.head.value]

    def get_buffer(self):
        buf = np.frombuffer(self.ring_buffer.get_obj(), dtype=self.data_type)
        return np.concatenate((buf[self.head.value + 1 :], buf[0 : self.head.value]))

    def push(self, v):
        self.head.value = self.head.value + 1
        if self.head.value == self.size:
            self.head.value = 0
        self.ring_buffer[self.head.value] = v  # randint(0,10)
開發者ID:wenlintan,項目名稱:trap-control,代碼行數:23,代碼來源:counters.py

示例12: test_continuous_send_dialog

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
    def test_continuous_send_dialog(self):
        self.add_signal_to_form("esaver.coco")
        self.__add_first_signal_to_generator()

        port = self.get_free_port()

        gframe = self.form.generator_tab_controller
        expected = np.zeros(gframe.total_modulated_samples, dtype=np.complex64)
        expected = gframe.modulate_data(expected)
        current_index = Value("L", 0)
        buffer = Array("f", 4 * len(expected))

        process = Process(target=receive, args=(port, current_index, 2 * len(expected), buffer))
        process.daemon = True
        process.start()
        time.sleep(1)  # ensure server is up

        ContinuousModulator.BUFFER_SIZE_MB = 10

        continuous_send_dialog = self.__get_continuous_send_dialog()
        continuous_send_dialog.device.set_client_port(port)
        continuous_send_dialog.device_settings_widget.ui.spinBoxNRepeat.setValue(2)
        continuous_send_dialog.ui.btnStart.click()
        QTest.qWait(1000)
        time.sleep(1)
        process.join(1)

        # CI sometimes swallows a sample
        self.assertGreaterEqual(current_index.value, len(expected) - 1)

        buffer = np.frombuffer(buffer.get_obj(), dtype=np.complex64)
        for i in range(len(expected)):
            self.assertEqual(buffer[i], expected[i], msg=str(i))

        continuous_send_dialog.ui.btnStop.click()
        continuous_send_dialog.ui.btnClear.click()
        QTest.qWait(1)

        continuous_send_dialog.close()
開發者ID:jopohl,項目名稱:urh,代碼行數:41,代碼來源:test_send_recv_dialog_gui.py

示例13: update_c

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
update_c(c1.ravel(),c2.ravel()) #########

print "Running main loop..."
while runflag:
    #print uflag1.value
    #print uflag2.value
    dat1 = uflag1.value
    dat2 = uflag2.value
    frame = vs.read() #for testing
    #datrecv1 = pipeul1.recv() #Blocking
    #datrecv2 = pipeul2.recv() #Blocking
    #if datrecv1[0] and datrecv2[0]:
    if (dat1 == 2) and (dat2 ==2):
        #pos3d =  calc3d(datrecv2[2].ravel(),datrecv1[2].ravel()) ########
        with uarray1.get_lock():
            arr1 = np.frombuffer(uarray1.get_obj())
        with uarray2.get_lock():
            arr2 = np.frombuffer(uarray2.get_obj())
        pos3d =  calc3d(arr1,arr2)
        #print np.asarray(pos3d)
        imgpts, jac = cv2.projectPoints(np.float32([np.asarray(pos3d)]).reshape(-1,3), rvecs, tvecs, mtx, dist)
        cv2.rectangle(frame,(int(imgpts[0,0,0]) - 2,int(imgpts[0,0,1]) - 2),(int(imgpts[0,0,0]) + 2 ,int(imgpts[0,0,1]) + 2),(255,0,0),1)
    #elif not datrecv1[1] or not datrecv2[1]:
    elif (dat1 == 0) or (dat2 ==0):
        runflag = False
    cv2.imshow('frame',frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
    	break

print "Waiting for both processes to stop..."
#while pipeul1.poll(0.5) or pipeul2.poll(0.5):
開發者ID:RoshanPasupathy,項目名稱:3d_localisation,代碼行數:33,代碼來源:mptrecvmaintest.py

示例14: Array

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
            yend = nrows
        for xstep in xstart:
            if xstep + xtile < ncols:
                xend = xstep + xtile
            else:
                xend = ncols
            l.append((ystep,yend,xstep, xend))
    #et = datetime.datetime.now()
    #print 'get_tile2 time taken: ', et - st
    return l 

if __name__ == '__main__':
    a = numpy.random.randint(0,101, (100,100))
    b = Array('i', 100*100) 
    #out = numpy.zeros_like(a)
    arr = numpy.frombuffer(b.get_obj())
    print arr.shape
    #out = numpy.frombuffer(b.get_obj()).reshape(100,100)
    print 'a'
    print a
    print 'out'
    print out
    tiles = get_tile2(a, 12,12)
    pool = Pool(processes=2)
    #pool.apply(func, args=(a,tiles, out))
    result=[pool.apply_async(func, (a, tile, out)) for tile in tiles]
    print 'a'
    print a
    print 'out'
    print out
    print 'result'
開發者ID:sixy6e,項目名稱:stash,代碼行數:33,代碼來源:test_parallel.py

示例15: findStandard

# 需要導入模塊: from multiprocessing import Array [as 別名]
# 或者: from multiprocessing.Array import get_obj [as 別名]
def findStandard(img, downSample=True):
    print 'Downsample'
    if downSample:
        
        s = img.shape        
        img = cv2.resize(img, (int(s[1] * 2560 / s[0]), 2560))
        
   
    total = numpy.zeros(img.shape).astype(numpy.uint8)
    
    labimg = cv2.cvtColor(img, cv2.COLOR_BGR2LAB).astype(numpy.float32)
    
    thresh = 200
    margin = 0.2 #black in between line on the standard is roughly 0.2 of the square width
    squares = []
    output = numpy.copy(img)
    #gen circular mask for houghGrid
    a, b = 30,30
    rad = 30
    y,x = numpy.ogrid[-a:61-a, -b:61-b]
    mask = x*x + y*y <= rad*rad
    horizontalOffsets = []
    verticalOffsets = []
    #for calculating orientation
    if HIGH_MEMORY:
        
        size = labimg.size
        print labimg.size, labimg.shape
        sharedlabimg_base = Array(ctypes.c_float, size)
        p = Pool(initializer=initProcess,initargs=(sharedlabimg_base,))
        sharedlabimg = numpy.frombuffer(sharedlabimg_base.get_obj(), dtype=numpy.float32)
        sharedlabimg = sharedlabimg.reshape(labimg.shape)
        print labimg.size, labimg.shape
        print sharedlabimg.size, sharedlabimg.shape
        sharedlabimg[:,:,:]=labimg[:,:,:]
        '''
        #test to see what sharedlabimg looks like after that
        sharedlabimg = numpy.frombuffer(sharedlabimg_base.get_obj(), dtype=numpy.float32)
        sharedlabimg = sharedlabimg.reshape(labimg.shape)
        cv2.imshow('test2', labimg[::6,::6])
        cv2.imshow('test', sharedlabimg[::6,::6])
        if cv2.waitKey(0) == ord('q'):
            quit()
            '''
            
        nMap = p.map(calcDistance, [(c,labimg.shape) for c in labStandardColors.reshape((labStandardColors.shape[0]*labStandardColors.shape[1],labStandardColors.shape[2]))])
        
    #print 'Find squares of each color'
    for r, row in enumerate(standardColors):
        for c, color in enumerate(row):           
            
            labColor = labStandardColors[r][c]
            print 'Calculating color ', labColor
            #print 'Calculate lab distance'
            if not HIGH_MEMORY:
                n = numpy.linalg.norm(labimg-labColor, axis=2)
            else:
                n = nMap[r*len(row)+c]
            n = n * 255 / n.max()
            n = n.astype(numpy.uint8)
            
            #print 'Threshold'
            #n = cv2.adaptiveThreshold(n, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, int(n.shape[1]*0.02) | 1, 6)
            ret, n = cv2.threshold(n, 50, 255, cv2.THRESH_BINARY_INV)
            #print 'Morphology'
            n = cv2.morphologyEx(n, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_RECT,(3,3)))
            #cv2.imshow(str(i*4+c), cv2.resize(n, dsize=(0,0), fx=0.2, fy=0.2))                
            #print 'Contours'
            contours,h = cv2.findContours(n, cv2.RETR_TREE , cv2.CHAIN_APPROX_SIMPLE )            
            #sometimes findcontours doesn't reutnr numpy arrays            
            for i, contour in enumerate(contours):
                contours[i] = numpy.array(contour)
            toDraw = []
            indices = []
            #print 'Process contours'
            for i, contour in enumerate(contours):    
                s = Square()
                s, count = s.processContour(contour, i, contours, h, minWidth=(labimg.shape[1] / 100))
                if s:
                    contours[i] = s
            curSquares = []            
            for square in contours:
                if isinstance(square, Square):                    
                    square.color = (int(color[0]), int(color[1]), int(color[2]))
                    curSquares.append(square)
            labels = numpy.zeros((img.shape[0], img.shape[1])).astype(numpy.uint8)               
            means = []     
            #print 'Calculate LAB'
            for i in range(0,len(curSquares)):            
                cv2.drawContours(labels, [curSquares[i].contour], -1, i+1, -1)
                roi = cv2.boundingRect(curSquares[i].contour)                                
                mean = cv2.mean(labimg[roi[1]:roi[1]+roi[3], roi[0]:roi[0]+roi[2]] , numpy.array(labels[roi[1]:roi[1]+roi[3], roi[0]:roi[0]+roi[2]] == i+1).astype(numpy.uint8))
                
                curSquares[i].labColor = (mean[0], mean[1], mean[2])
                ##print curSquares[i].labColor, numpy.linalg.norm(curSquares[i].labColor-labColor)
                #cv2.drawContours(total, [curSquares[i].contour], -1, (255,255,255), -1)
                means.append((numpy.linalg.norm(curSquares[i].labColor-labColor), curSquares[i]))
            
            means.sort(key=itemgetter(0), reverse=True)
            colorYield[r][c] += len(means)
#.........這裏部分代碼省略.........
開發者ID:jarrelscy,項目名稱:ColorCheckerDetector,代碼行數:103,代碼來源:standardDetector.py


注:本文中的multiprocessing.Array.get_obj方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。