當前位置: 首頁>>代碼示例>>Python>>正文


Python Axes3D.scatter3D方法代碼示例

本文整理匯總了Python中mpl_toolkits.mplot3d.Axes3D.scatter3D方法的典型用法代碼示例。如果您正苦於以下問題:Python Axes3D.scatter3D方法的具體用法?Python Axes3D.scatter3D怎麽用?Python Axes3D.scatter3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mpl_toolkits.mplot3d.Axes3D的用法示例。


在下文中一共展示了Axes3D.scatter3D方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: clust

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import scatter3D [as 別名]
def clust(elect_coords, n_clusts, iters, init_clusts):
    
   # Load resultant coordinates from Hough circles transform
   #coords = scipy.io.loadmat(elect_coords);
   #dat = coords.get('elect_coords');
   dat = elect_coords;

   # Configure Kmeans
   cluster = sklearn.cluster.KMeans();
   cluster.n_clusters= n_clusts;
   cluster.init = 'k-means++';
   cluster.max_iter = iters;
   cluster.verbose = 0;
   cluster.n_init = init_clusts;
   cluster.fit(dat);

   # Grab vector for plotting each dimension
   x = list(cluster.cluster_centers_[:,0]);
   y = list(cluster.cluster_centers_[:,1]);
   z = list(cluster.cluster_centers_[:,2]);
   c = list(cluster.labels_);

   scipy.io.savemat('k_labels.mat', {'labels':cluster.labels_})
   scipy.io.savemat('k_coords.mat', {'coords':cluster.cluster_centers_})

   # plot the results of kmeans
   cmap = colors.Colormap('hot');
   norm  = colors.Normalize(vmin=1, vmax=10);
   s = 64;
   fig = plt.figure();
   ax = fig.add_subplot(111,projection='3d');
   Axes3D.scatter3D(ax,x,y,z,s=s);
   plt.show(fig);
   
   return cluster.cluster_centers_,cluster.labels_;
開發者ID:ZacharyIG,項目名稱:freeCoG,代碼行數:37,代碼來源:Kmeans_cluster.py

示例2: onpick

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import scatter3D [as 別名]
    def onpick(event):

        # get event indices and x y z coord for click
        ind = event.ind[0];
        x_e, y_e, z_e = event.artist._offsets3d;
        print x_e[ind], y_e[ind], z_e[ind];
        seg_coord = [x_e[ind], y_e[ind], z_e[ind]];
        seg_elecs.append(seg_coord);

        # refresh plot with red dots picked and blue dots clean
        #fig.clf();
        seg_arr = np.array(seg_elecs);
        x_f = seg_arr[:,0];
        y_f = seg_arr[:,1];
        z_f = seg_arr[:,2];
        plt.cla();
        Axes3D.scatter3D(ax,x_f,y_f,z_f,s=150,c='r', picker=5);

        # get array of only clean elecs to re-plot as blue dots
        clean_list = list(coords);
        clean_list = [list(i) for i in clean_list];
        for coordin in clean_list:
                if list(coordin) in seg_elecs:
                    clean_list.pop(clean_list.index(coordin));
        clean_coordis = np.array(clean_list);
        x_c = clean_coordis[:,0];
        y_c = clean_coordis[:,1];
        z_c = clean_coordis[:,2];
        Axes3D.scatter3D(ax,x_c, y_c, z_c, s=150,c='b', picker=5);
        time.sleep(0.5);
        plt.draw();
開發者ID:ZacharyIG,項目名稱:freeCoG,代碼行數:33,代碼來源:seg_Hough3d.py

示例3: elecDetect

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import scatter3D [as 別名]
def elecDetect(CT_dir, T1_dir, img, thresh, frac, num_gridStrips, n_elects):

    # navigate to dir with CT img
    os.chdir(T1_dir)

    # Extract and apply CT brain mask
    mask_CTBrain(CT_dir, T1_dir, frac)
    masked_img = "masked_" + img

    # run CT_electhresh
    print "::: Thresholding CT at %f stdv :::" % (thresh)
    electhresh(masked_img, thresh)

    # run im_filt to gaussian smooth thresholded image
    fname = "thresh_" + masked_img
    print "::: Applying guassian smooth of 2.5mm to thresh-CT :::"
    img_filt(fname)

    # run hough transform to detect electrodes
    new_fname = "smoothed_" + fname
    print "::: Applying 2d Hough Transform to localize electrode clusts :::"
    elect_coords = CT_hough(CT_dir, new_fname)

    # set up x,y,z coords to view hough results
    x = elect_coords[:, 0]
    x = x.tolist()
    y = elect_coords[:, 1]
    y = y.tolist()
    z = elect_coords[:, 2]
    z = z.tolist()

    # plot the hough results
    s = 64
    fig = plt.figure()
    ax = fig.add_subplot(111, projection="3d")
    Axes3D.scatter3D(ax, x, y, z, s=s)
    plt.show(fig)

    # run K means to find grid and strip clusters
    n_clusts = num_gridStrips
    # number of cluster to find = number of electrodes
    iters = 1000
    init_clusts = n_clusts
    print "::: Performing K-means cluster to find %d grid-strip and noise clusters :::" % (n_clusts)
    [clust_coords, clust_labels] = clust(elect_coords, n_clusts, iters, init_clusts)

    # run K means to find electrode center coordinates
    n_clusts = n_elects
    # number of cluster to find = number of electrodes
    iters = 1000
    init_clusts = n_clusts
    print "::: Performing K-means cluster to find %d electrode centers :::" % (n_clusts)
    [center_coords, labels] = clust(elect_coords, n_clusts, iters, init_clusts)

    print "::: Finished :::"

    return elect_coords, clust_coords, clust_labels
開發者ID:ZacharyIG,項目名稱:freeCoG,代碼行數:59,代碼來源:run_elecDetect.py

示例4: seg_Hough3D

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import scatter3D [as 別名]
def seg_Hough3D(CT_dir,fname, out_fname):

    # load in 3D hough output
    coords = scipy.io.loadmat(CT_dir + '/' + fname).get('elecmatrix');
    x = coords[:,0];
    y = coords[:,1];
    z = coords[:,2];

    # plot dirty elec results
    s = 150;
    fig = plt.figure(facecolor="white");
    ax = fig.add_subplot(111,projection='3d');
    

    # create point and click function for selecting false alarm points
    seg_elecs = [];
    def onpick(event):

        # get event indices and x y z coord for click
        ind = event.ind[0];
        x_e, y_e, z_e = event.artist._offsets3d;
        print x_e[ind], y_e[ind], z_e[ind];
        seg_coord = [x_e[ind], y_e[ind], z_e[ind]];
        seg_elecs.append(seg_coord);

        # refresh plot with red dots picked and blue dots clean
        #fig.clf();
        seg_arr = np.array(seg_elecs);
        x_f = seg_arr[:,0];
        y_f = seg_arr[:,1];
        z_f = seg_arr[:,2];
        plt.cla();
        Axes3D.scatter3D(ax,x_f,y_f,z_f,s=150,c='r', picker=5);

        # get array of only clean elecs to re-plot as blue dots
        clean_list = list(coords);
        clean_list = [list(i) for i in clean_list];
        for coordin in clean_list:
                if list(coordin) in seg_elecs:
                    clean_list.pop(clean_list.index(coordin));
        clean_coordis = np.array(clean_list);
        x_c = clean_coordis[:,0];
        y_c = clean_coordis[:,1];
        z_c = clean_coordis[:,2];
        Axes3D.scatter3D(ax,x_c, y_c, z_c, s=150,c='b', picker=5);
        time.sleep(0.5);
        plt.draw();
    
    Axes3D.scatter3D(ax,x,y,z,s=s, picker=5);
    #title_font = {'fontname':'serif', 'size':'24', 'color':'black', 'weight':'bold',                            
    #'verticalalignment':'bottom'};                                                                        
    plt.title('Hough 3D Output Coordinates: ');
    fig.canvas.mpl_connect('pick_event', onpick);
    plt.ion();
    plt.show(fig);

    # wait for user to press enter to continue
    while True:
        
        fig.canvas.mpl_connect('pick_event', onpick);
        plt.draw();
        i = raw_input("Enter text or Enter to quit: ");
        if i == '':
            
            # remove all false coords from elec centers list
            fig.clf();
            coords_list = list(coords);
            coords_list = [list(i) for i in coords_list];
            for coordi in coords_list:
                if list(coordi) in seg_elecs:
                    coords_list.pop(coords_list.index(coordi));
            clean_coords = np.array(seg_elecs)

            # plot result
            X = clean_coords[:,0];
            Y = clean_coords[:,1];
            Z = clean_coords[:,2];


            s = 150;
            fig = plt.figure(facecolor="white");
            ax = fig.add_subplot(111,projection='3d');
            Axes3D.scatter3D(ax,X,Y,Z,s=s);
            plt.show(fig);
            
            # save the cleaned elecs file
            new_fname = CT_dir + '/' + out_fname;            
            scipy.io.savemat(new_fname, {'elecmatrix':clean_coords});
            
            return clean_coords;
            break;
開發者ID:ZacharyIG,項目名稱:freeCoG,代碼行數:93,代碼來源:seg_Hough3d.py

示例5:

# 需要導入模塊: from mpl_toolkits.mplot3d import Axes3D [as 別名]
# 或者: from mpl_toolkits.mplot3d.Axes3D import scatter3D [as 別名]
# get img dims
z_len = img_data[0,0,:].shape;
x_len = img_data[:,0,0].shape;
y_len = img_data[0,:,0].shape;

# get coords of voxels containing center data
coords = np.nonzero(img_data);
x = coords[0];
y = coords[1];
z = coords[2];

# concatonate xyz vectors into 3 x n matrix
stackem = (x,y,z);
coords = np.vstack(stackem);
coords = np.transpose(coords);
scipy.io.savemat('3dHough_coords.mat', {'coords':coords});


# plot the hough center results
s = 202
fig = plt.figure(facecolor="white");
ax = fig.add_subplot(111,projection='3d');
Axes3D.scatter3D(ax,x,y,z,s=s);
plt.show(fig);





開發者ID:ZacharyIG,項目名稱:freeCoG,代碼行數:26,代碼來源:loadSave_houghDat.py


注:本文中的mpl_toolkits.mplot3d.Axes3D.scatter3D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。