本文整理匯總了Python中moviepy.video.io.VideoFileClip.VideoFileClip.iter_frames方法的典型用法代碼示例。如果您正苦於以下問題:Python VideoFileClip.iter_frames方法的具體用法?Python VideoFileClip.iter_frames怎麽用?Python VideoFileClip.iter_frames使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類moviepy.video.io.VideoFileClip.VideoFileClip
的用法示例。
在下文中一共展示了VideoFileClip.iter_frames方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: VideoStim
# 需要導入模塊: from moviepy.video.io.VideoFileClip import VideoFileClip [as 別名]
# 或者: from moviepy.video.io.VideoFileClip.VideoFileClip import iter_frames [as 別名]
class VideoStim(Stim, CollectionStimMixin):
''' A video. '''
def __init__(self, filename, onset=None):
self.clip = VideoFileClip(filename)
self.fps = self.clip.fps
self.width = self.clip.w
self.height = self.clip.h
self.n_frames = int(self.fps * self.clip.duration)
duration = self.clip.duration
super(VideoStim, self).__init__(filename, onset, duration)
def __iter__(self):
""" Frame iteration. """
for i, f in enumerate(self.clip.iter_frames()):
yield VideoFrameStim(self, i, data=f)
@property
def frames(self):
return [f for f in self.clip.iter_frames()]
def get_frame(self, index=None, onset=None):
if index is not None:
onset = float(index) / self.fps
else:
index = int(onset * self.fps)
return VideoFrameStim(self, index, data=self.clip.get_frame(onset))
示例2: _load_video
# 需要導入模塊: from moviepy.video.io.VideoFileClip import VideoFileClip [as 別名]
# 或者: from moviepy.video.io.VideoFileClip.VideoFileClip import iter_frames [as 別名]
def _load_video(full_path, size = None, resize_mode = 'resize_and_crop', cut_edges=False, cut_edges_thresh=0):
"""
Lead a video into a numpy array
:param full_path: Full path to the video
:param size: A 2-tuple of width-height, indicating the desired size of the ouput
:param resize_mode: The mode with which to get the video to the desired size. Can be:
'squeeze', 'preserve_aspect', 'crop', 'scale_crop'. See resize_image in image_ops.py for more info.
:param cut_edges: True if you want to cut the dark edges from the video
:param cut_edges_thresh: If cut_edges, this is the threshold at which you'd like to cut them.
:return: A (n_frames, height, width, 3) numpy array
"""
try:
from moviepy.video.io.VideoFileClip import VideoFileClip
except ImportError:
raise ImportError("You need to install moviepy to read videos. In the virtualenv, go `pip install moviepy`")
assert os.path.exists(full_path)
video = VideoFileClip(full_path)
images = []
edge_crops = None
for frame in video.iter_frames():
if cut_edges:
if edge_crops is None:
edge_crops = get_dark_edge_slice(frame, cut_edges_thresh=cut_edges_thresh)
else:
frame = frame[edge_crops[0], edge_crops[1]]
if size is not None:
width, height = size
frame = resize_image(frame, width=width, height=height, mode=resize_mode)
images.append(frame)
return images
示例3: ffwd_video
# 需要導入模塊: from moviepy.video.io.VideoFileClip import VideoFileClip [as 別名]
# 或者: from moviepy.video.io.VideoFileClip.VideoFileClip import iter_frames [as 別名]
def ffwd_video(path_in, path_out, checkpoint_dir, device_t='/gpu:0', batch_size=4):
video_clip = VideoFileClip(path_in, audio=False)
video_writer = ffmpeg_writer.FFMPEG_VideoWriter(path_out, video_clip.size, video_clip.fps, codec="libx264",
preset="medium", bitrate="2000k",
audiofile=path_in, threads=None,
ffmpeg_params=None)
g = tf.Graph()
soft_config = tf.ConfigProto(allow_soft_placement=True)
soft_config.gpu_options.allow_growth = True
with g.as_default(), g.device(device_t), \
tf.Session(config=soft_config) as sess:
batch_shape = (batch_size, video_clip.size[1], video_clip.size[0], 3)
img_placeholder = tf.placeholder(tf.float32, shape=batch_shape,
name='img_placeholder')
preds = transform.net(img_placeholder)
saver = tf.train.Saver()
if os.path.isdir(checkpoint_dir):
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
else:
raise Exception("No checkpoint found...")
else:
saver.restore(sess, checkpoint_dir)
X = np.zeros(batch_shape, dtype=np.float32)
def style_and_write(count):
for i in range(count, batch_size):
X[i] = X[count - 1] # Use last frame to fill X
_preds = sess.run(preds, feed_dict={img_placeholder: X})
for i in range(0, count):
video_writer.write_frame(np.clip(_preds[i], 0, 255).astype(np.uint8))
frame_count = 0 # The frame count that written to X
for frame in video_clip.iter_frames():
X[frame_count] = frame
frame_count += 1
if frame_count == batch_size:
style_and_write(frame_count)
frame_count = 0
if frame_count != 0:
style_and_write(frame_count)
video_writer.close()