當前位置: 首頁>>代碼示例>>Python>>正文


Python GeneralizationAcrossTime.predict方法代碼示例

本文整理匯總了Python中mne.decoding.GeneralizationAcrossTime.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python GeneralizationAcrossTime.predict方法的具體用法?Python GeneralizationAcrossTime.predict怎麽用?Python GeneralizationAcrossTime.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mne.decoding.GeneralizationAcrossTime的用法示例。


在下文中一共展示了GeneralizationAcrossTime.predict方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_circular_classifiers

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
def test_circular_classifiers():
    from mne.decoding import GeneralizationAcrossTime
    from ..scorers import scorer_angle
    from sklearn.linear_model import Ridge, RidgeCV
    epochs, angles = make_circular_data()
    clf_list = [PolarRegression, AngularRegression,
                SVR_polar, SVR_angle]  # XXX will be deprecated
    for clf_init in clf_list:
        for independent in [False, True]:
            if clf_init in [SVR_polar, SVR_angle]:
                if (not independent):
                    continue
                clf = clf_init(clf=Ridge(random_state=0))
            else:
                clf = clf_init(clf=Ridge(random_state=0),
                               independent=independent)
            print clf_init, independent
            gat = GeneralizationAcrossTime(clf=clf, scorer=scorer_angle)
            gat.fit(epochs, y=angles)
            gat.predict(epochs)
            gat.score(y=angles)
            assert_true(np.abs(gat.scores_[0][0]) < .5)  # chance level
            assert_true(gat.scores_[1][1] > 1.)  # decode
            assert_true(gat.scores_[2][2] > 1.)  # decode
            assert_true(gat.scores_[1][2] < -1.)  # anti-generalize
    # Test args
    gat = GeneralizationAcrossTime(clf=RidgeCV(alphas=[1., 2.]),
                                   scorer=scorer_angle)
    gat.fit(epochs, y=angles)
    gat = GeneralizationAcrossTime(clf=RidgeCV(), scorer=scorer_angle)
    gat.fit(epochs, y=angles)
開發者ID:LauraGwilliams,項目名稱:jr-tools,代碼行數:33,代碼來源:test_clf.py

示例2: test_generalization_across_time

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC
    from sklearn.base import is_classifier
    # KernelRidge is used for testing 1) regression analyses 2) n-dimensional
    # predictions.
    from sklearn.kernel_ridge import KernelRidge
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import roc_auc_score, mean_squared_error

    epochs = make_epochs()
    y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1))
    if check_version('sklearn', '0.18'):
        from sklearn.model_selection import (KFold, StratifiedKFold,
                                             ShuffleSplit, LeaveOneLabelOut)
        cv_shuffle = ShuffleSplit()
        cv = LeaveOneLabelOut()
        # XXX we cannot pass any other parameters than X and y to cv.split
        # so we have to build it before hand
        cv_lolo = [(train, test) for train, test in cv.split(
                   X=y_4classes, y=y_4classes, labels=y_4classes)]

        # With sklearn >= 0.17, `clf` can be identified as a regressor, and
        # the scoring metrics can therefore be automatically assigned.
        scorer_regress = None
    else:
        from sklearn.cross_validation import (KFold, StratifiedKFold,
                                              ShuffleSplit, LeaveOneLabelOut)
        cv_shuffle = ShuffleSplit(len(epochs))
        cv_lolo = LeaveOneLabelOut(y_4classes)

        # With sklearn < 0.17, `clf` cannot be identified as a regressor, and
        # therefore the scoring metrics cannot be automatically assigned.
        scorer_regress = mean_squared_error
    # Test default running
    gat = GeneralizationAcrossTime(picks='foo')
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    assert_raises(ValueError, gat.fit, epochs)
    with warnings.catch_warnings(record=True):
        # check classic fit + check manual picks
        gat.picks = [0]
        gat.fit(epochs)
        # check optional y as array
        gat.picks = None
        gat.fit(epochs, y=epochs.events[:, 2])
        # check optional y as list
        gat.fit(epochs, y=epochs.events[:, 2].tolist())
    assert_equal(len(gat.picks_), len(gat.ch_names), 1)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    assert_equal(gat.ch_names, epochs.ch_names)
    # test different predict function:
    gat = GeneralizationAcrossTime(predict_method='decision_function')
    gat.fit(epochs)
    # With classifier, the default cv is StratifiedKFold
    assert_true(gat.cv_.__class__ == StratifiedKFold)
    gat.predict(epochs)
    assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1))
    gat.predict_method = 'predict_proba'
    gat.predict(epochs)
    assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 2))
    gat.predict_method = 'foo'
    assert_raises(NotImplementedError, gat.predict, epochs)
    gat.predict_method = 'predict'
    gat.predict(epochs)
    assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1))
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    assert_true(gat.scorer_.__name__ == 'accuracy_score')
    # check clf / predict_method combinations for which the scoring metrics
    # cannot be inferred.
    gat.scorer = None
    gat.predict_method = 'decision_function'
    assert_raises(ValueError, gat.score, epochs)
    # Check specifying y manually
    gat.predict_method = 'predict'
    gat.score(epochs, y=epochs.events[:, 2])
    gat.score(epochs, y=epochs.events[:, 2].tolist())
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.050 (s), length: 0.050 (s), n_time_windows: 15>",
                 "%s" % gat.train_times_)
#.........這裏部分代碼省略.........
開發者ID:jmontoyam,項目名稱:mne-python,代碼行數:103,代碼來源:test_time_gen.py

示例3: test_generalization_across_time

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import mean_squared_error

    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg='mag', stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[0:2]
    decim = 30

    # Test on time generalization within one condition
    with warnings.catch_warnings(record=True):
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True, decim=decim)
    # Test default running
    gat = GeneralizationAcrossTime()
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    assert_raises(ValueError, gat.fit, epochs, picks='foo')
    with warnings.catch_warnings(record=True):
        # check classic fit + check manual picks
        gat.fit(epochs, picks=[0])
        # check optional y as array
        gat.fit(epochs, y=epochs.events[:, 2])
        # check optional y as list
        gat.fit(epochs, y=epochs.events[:, 2].tolist())
    assert_equal(len(gat.picks_), len(gat.ch_names), 1)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    assert_equal(gat.ch_names, epochs.ch_names)
    gat.predict(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    gat.score(epochs, y=epochs.events[:, 2])
    gat.score(epochs, y=epochs.events[:, 2].tolist())
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15>",
                 "%s" % gat.train_times)
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15 x 15>",
                 "%s" % gat.test_times_)

    # the y-check
    gat.predict_mode = 'mean-prediction'
    epochs2.events[:, 2] += 10
    gat_ = copy.deepcopy(gat)
    assert_raises(ValueError, gat_.score, epochs2)
    gat.predict_mode = 'cross-validation'

    # Test basics
    # --- number of trials
    assert_true(gat.y_train_.shape[0] ==
                gat.y_true_.shape[0] ==
                len(gat.y_pred_[0][0]) == 14)
    # ---  number of folds
    assert_true(np.shape(gat.estimators_)[1] == gat.cv)
    # ---  length training size
    assert_true(len(gat.train_times['slices']) == 15 ==
                np.shape(gat.estimators_)[0])
    # ---  length testing sizes
    assert_true(len(gat.test_times_['slices']) == 15 ==
                np.shape(gat.scores_)[0])
    assert_true(len(gat.test_times_['slices'][0]) == 15 ==
                np.shape(gat.scores_)[1])

    # Test longer time window
    gat = GeneralizationAcrossTime(train_times={'length': .100})
    with warnings.catch_warnings(record=True):
        gat2 = gat.fit(epochs)
    assert_true(gat is gat2)  # return self
    assert_true(hasattr(gat2, 'cv_'))
    assert_true(gat2.cv_ != gat.cv)
    scores = gat.score(epochs)
    assert_true(isinstance(scores, list))  # type check
    assert_equal(len(scores[0]), len(scores))  # shape check

    assert_equal(len(gat.test_times_['slices'][0][0]), 2)
    # Decim training steps
    gat = GeneralizationAcrossTime(train_times={'step': .100})
#.........這裏部分代碼省略.........
開發者ID:XristosK,項目名稱:mne-python,代碼行數:103,代碼來源:test_time_gen.py

示例4: test_generalization_across_time

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC
    from sklearn.linear_model import RANSACRegressor, LinearRegression
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import mean_squared_error
    from sklearn.cross_validation import LeaveOneLabelOut

    epochs = make_epochs()

    # Test default running
    gat = GeneralizationAcrossTime(picks='foo')
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    assert_raises(ValueError, gat.fit, epochs)
    with warnings.catch_warnings(record=True):
        # check classic fit + check manual picks
        gat.picks = [0]
        gat.fit(epochs)
        # check optional y as array
        gat.picks = None
        gat.fit(epochs, y=epochs.events[:, 2])
        # check optional y as list
        gat.fit(epochs, y=epochs.events[:, 2].tolist())
    assert_equal(len(gat.picks_), len(gat.ch_names), 1)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    assert_equal(gat.ch_names, epochs.ch_names)
    gat.predict(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    gat.score(epochs, y=epochs.events[:, 2])
    gat.score(epochs, y=epochs.events[:, 2].tolist())
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.050 (s), length: 0.050 (s), n_time_windows: 15>",
                 "%s" % gat.train_times_)
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.050 (s), length: 0.050 (s), n_time_windows: 15 x 15>",
                 "%s" % gat.test_times_)

    # the y-check
    gat.predict_mode = 'mean-prediction'
    epochs2.events[:, 2] += 10
    gat_ = copy.deepcopy(gat)
    assert_raises(ValueError, gat_.score, epochs2)
    gat.predict_mode = 'cross-validation'

    # Test basics
    # --- number of trials
    assert_true(gat.y_train_.shape[0] ==
                gat.y_true_.shape[0] ==
                len(gat.y_pred_[0][0]) == 14)
    # ---  number of folds
    assert_true(np.shape(gat.estimators_)[1] == gat.cv)
    # ---  length training size
    assert_true(len(gat.train_times_['slices']) == 15 ==
                np.shape(gat.estimators_)[0])
    # ---  length testing sizes
    assert_true(len(gat.test_times_['slices']) == 15 ==
                np.shape(gat.scores_)[0])
    assert_true(len(gat.test_times_['slices'][0]) == 15 ==
                np.shape(gat.scores_)[1])

    # Test longer time window
    gat = GeneralizationAcrossTime(train_times={'length': .100})
    with warnings.catch_warnings(record=True):
        gat2 = gat.fit(epochs)
    assert_true(gat is gat2)  # return self
    assert_true(hasattr(gat2, 'cv_'))
    assert_true(gat2.cv_ != gat.cv)
    scores = gat.score(epochs)
    assert_true(isinstance(scores, list))  # type check
    assert_equal(len(scores[0]), len(scores))  # shape check

    assert_equal(len(gat.test_times_['slices'][0][0]), 2)
    # Decim training steps
    gat = GeneralizationAcrossTime(train_times={'step': .100})
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)

    gat.score(epochs)
    assert_true(len(gat.scores_) == len(gat.estimators_) == 8)  # training time
#.........這裏部分代碼省略.........
開發者ID:Famguy,項目名稱:mne-python,代碼行數:103,代碼來源:test_time_gen.py

示例5: EpochsArray

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
epochs = EpochsArray(data, info, events)

# RUN GAT ======================================================================

# SVR
# --- fit & predict separately
cos = lambda angles: np.cos(angle2circle(angles))
sin = lambda angles: np.sin(angle2circle(angles))
gats = list()
for transform in [cos, sin]:
    scaler = StandardScaler()
    svr = SVR(C=1, kernel='linear')
    clf = Pipeline([('scaler', scaler), ('svr', svr)])
    gat = GeneralizationAcrossTime(n_jobs=-1, clf=clf)
    gat.fit(epochs, y=transform(trial_angles))
    gat.predict(epochs)
    gats.append(gat)
# --- recombine
predict_angles, true_angles = recombine_svr_prediction(gats[0], gats[1])
# --- score
angle_errors_svr = compute_error_svr(predict_angles, true_angles)
plt.matshow(np.mean(angle_errors_svr,axis=2)), plt.colorbar(), plt.show()


# SVC Gat
scaler = StandardScaler()
svc = SVC(C=1, kernel='linear', probability=True)
clf = Pipeline([('scaler', scaler), ('svc', svc)])
gat = GeneralizationAcrossTime(n_jobs=-1, clf=clf, predict_type='predict_proba')
# --- fit & predict
gat.fit(epochs, y=trial_angles)
開發者ID:SherazKhan,項目名稱:Paris_orientation-decoding,代碼行數:33,代碼來源:example_toy_data2.py

示例6: simulate_model

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
def simulate_model(sources, mixin, background, snr=.5, n_trial=100):
    """Run simulations :
    1. Takes source activations in two visibility conditions:
        dict(high=(n_sources * n_times), low=(n_sources * n_times))
    2. Target presence/absence is coded in y vector and corresponds to the
       reverse activation in source space.
    3. Takes a mixin matrix that project the data from source space to sensor
        space
    4. Generates multiple low and high visibility trials.
    5. Fit target presence (y) across all trials (both high and low visiblity),
    6. Score target presence separately for high and low visibility trials
    7. Fit and score target visibility (for simplicity reasons, we only have 2
       visibility conditions. Consequently, we will fit a logistic regression
       and not a ridge like the one used for in empirical part of the paper.)
    """
    n_source, n_chan = mixin.shape

    # add information
    X, y, visibility = list(), list(), list()
    for vis, source in sources.iteritems():
        n_source, n_time = source.shape
        # define present and absent in source space
        present = np.stack([source + background] * (n_trial // 2))
        absent = np.stack([background] * (n_trial // 2))
        source = np.vstack((present, absent))
        y_ = np.hstack((np.ones(n_trial // 2), -1 * np.ones(n_trial // 2)))

        # transform in sensor space
        sensor = np.dot(mixin.T, np.hstack((source)))
        sensor = np.reshape(sensor, [n_chan, -1, n_time]).transpose(1, 0, 2)

        # add sensor specific  noise
        sensor += np.random.randn(n_trial, n_chan, n_time) / snr
        X.append(sensor)
        y.append(y_)
        visibility.append(int(vis == 'high') * np.ones(n_trial))
    X = np.concatenate(X, axis=0)
    y = np.concatenate(y, axis=0)
    visibility = np.concatenate(visibility, axis=0)

    # shuffle trials
    idx = range(n_trial * 2)
    np.random.shuffle(idx)
    X, y, visibility = X[idx], y[idx], visibility[idx]

    # format to MNE epochs
    epochs = EpochsArray(X, create_info(n_chan, sfreq, 'mag'), tmin=times[0],
                         proj=False, baseline=None)

    # Temporal generalization pipeline
    gat = GeneralizationAcrossTime(clf=analysis['clf'], cv=8,
                                   scorer=scorer_auc, n_jobs=-1,
                                   score_mode='mean-sample-wise')

    gat.fit(epochs, y=y)
    y_pred = gat.predict(epochs)
    y_pred = y_pred[:, :, :, 0].transpose(2, 0, 1)

    score = list()
    for vis in range(2):
        # select all absent trials + present at a given visibility
        sel = np.unique(np.hstack((np.where(y == -1)[0],
                        np.where(visibility == vis)[0])))
        score_ = scorer_auc(y[sel], y_pred[sel], n_jobs=-1)
        score.append(score_)

    # correlation with visibility
    sel = np.where(y == 1)[0]
    corr_vis = scorer_spearman(visibility[sel], y_pred[sel], n_jobs=-1)

    # decode visibility
    sel = np.where(y == 1)[0]  # present trials only
    gat.fit(epochs[sel], y=visibility[sel])
    score_vis = gat.score(epochs[sel], y=visibility[sel])
    return np.array(score), np.squeeze(score_vis), np.squeeze(corr_vis)
開發者ID:kingjr,項目名稱:decoding_unconscious_maintenance,代碼行數:77,代碼來源:run_plot_simulations.py

示例7: test_generalization_across_time

# 需要導入模塊: from mne.decoding import GeneralizationAcrossTime [as 別名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 別名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC

    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg='mag', stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[0:2]
    decim = 30

    # Test on time generalization within one condition
    with warnings.catch_warnings(record=True):
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True, decim=decim)
    # Test default running
    gat = GeneralizationAcrossTime()
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    gat.predict(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predict_type : 'predict' on 15 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predict_type : 'predict' on 15 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_type = gat.predict_type
    gat.predict_type = 'foo'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_type = old_type

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15>",
                 "%s" % gat.train_times)
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15 x 15>",
                 "%s" % gat.test_times_)

    # the y-check
    gat.predict_mode = 'mean-prediction'
    epochs2.events[:, 2] += 10
    assert_raises(ValueError, gat.score, epochs2)
    gat.predict_mode = 'cross-validation'

    # Test basics
    # --- number of trials
    assert_true(gat.y_train_.shape[0] ==
                gat.y_true_.shape[0] ==
                gat.y_pred_.shape[2] == 14)
    # ---  number of folds
    assert_true(np.shape(gat.estimators_)[1] == gat.cv)
    # ---  length training size
    assert_true(len(gat.train_times['slices']) == 15 ==
                np.shape(gat.estimators_)[0])
    # ---  length testing sizes
    assert_true(len(gat.test_times_['slices']) == 15 ==
                np.shape(gat.scores_)[0])
    assert_true(len(gat.test_times_['slices'][0]) == 15 ==
                np.shape(gat.scores_)[1])

    # Test longer time window
    gat = GeneralizationAcrossTime(train_times={'length': .100})
    with warnings.catch_warnings(record=True):
        gat2 = gat.fit(epochs)
    assert_true(gat is gat2)  # return self
    assert_true(hasattr(gat2, 'cv_'))
    assert_true(gat2.cv_ != gat.cv)
    scores = gat.score(epochs)
    assert_true(isinstance(scores, list))  # type check
    assert_equal(len(scores[0]), len(scores))  # shape check

    assert_equal(len(gat.test_times_['slices'][0][0]), 2)
    # Decim training steps
    gat = GeneralizationAcrossTime(train_times={'step': .100})
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)

    gat.score(epochs)
    assert_equal(len(gat.scores_), 8)

    # Test start stop training
    gat = GeneralizationAcrossTime(train_times={'start': 0.090,
#.........這裏部分代碼省略.........
開發者ID:pombreda,項目名稱:mne-python,代碼行數:103,代碼來源:test_time_gen.py


注:本文中的mne.decoding.GeneralizationAcrossTime.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。