當前位置: 首頁>>代碼示例>>Python>>正文


Python Adaline.predict方法代碼示例

本文整理匯總了Python中mlxtend.classifier.Adaline.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python Adaline.predict方法的具體用法?Python Adaline.predict怎麽用?Python Adaline.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlxtend.classifier.Adaline的用法示例。


在下文中一共展示了Adaline.predict方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_normal_equation

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_normal_equation():
    t1 = np.array([[-0.08], [1.02]])
    b1 = np.array([0.00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=None,
                  random_seed=None)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, decimal=2)
    np.testing.assert_almost_equal(ada.b_, b1, decimal=2)
    assert (y1 == ada.predict(X_std)).all(), ada.predict(X_std)
開發者ID:rasbt,項目名稱:mlxtend,代碼行數:13,代碼來源:test_adaline.py

示例2: test_refit_weights

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_refit_weights():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=15, eta=0.01, solver='gd', random_seed=1)
    ada.fit(X_std, y1, init_weights=True)
    ada.fit(X_std, y1, init_weights=False)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:beingzy,項目名稱:mlxtend,代碼行數:9,代碼來源:test_adaline.py

示例3: test_0_1_class

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_0_1_class():

    t1 = np.array([0.51, -0.04,  0.51])
    ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1)
    ada.fit(X_std, y0)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y0 == ada.predict(X_std)).all())
開發者ID:Afey,項目名稱:mlxtend,代碼行數:9,代碼來源:test_adaline.py

示例4: test_stochastic_gradient_descent

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_stochastic_gradient_descent():

    t1 = np.array([0.03, -0.09, 1.02])
    ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:Afey,項目名稱:mlxtend,代碼行數:9,代碼來源:test_adaline.py

示例5: test_gradient_descent

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_gradient_descent():

    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30, eta=0.01, learning='gd', random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:Afey,項目名稱:mlxtend,代碼行數:9,代碼來源:test_adaline.py

示例6: test_normal_equation

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_normal_equation():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=None,
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:datasci-co,項目名稱:mlxtend,代碼行數:11,代碼來源:test_adaline.py

示例7: test_stochastic_gradient_descent

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_stochastic_gradient_descent():
    t1 = np.array([[-0.08], [1.02]])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=len(y),
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:rasbt,項目名稱:mlxtend,代碼行數:11,代碼來源:test_adaline.py

示例8: test_standardized_iris_data_with_zero_weights

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_standardized_iris_data_with_zero_weights():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1,
                  zero_init_weight=True)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:datasci-co,項目名稱:mlxtend,代碼行數:12,代碼來源:test_adaline.py

示例9: test_refit_weights

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_refit_weights():
    t1 = np.array([[-0.08], [1.02]])
    ada = Adaline(epochs=15,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1, init_params=True)
    ada.fit(X_std, y1, init_params=False)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:rasbt,項目名稱:mlxtend,代碼行數:12,代碼來源:test_adaline.py

示例10: test_standardized_iris_data_with_shuffle

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_standardized_iris_data_with_shuffle():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  solver='gd',
                  random_seed=1,
                  shuffle=True)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:beingzy,項目名稱:mlxtend,代碼行數:12,代碼來源:test_adaline.py

示例11: test_gradient_descent

# 需要導入模塊: from mlxtend.classifier import Adaline [as 別名]
# 或者: from mlxtend.classifier.Adaline import predict [as 別名]
def test_gradient_descent():
    t1 = np.array([[-0.08], [1.02]])
    b1 = np.array([0.00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, decimal=2)
    np.testing.assert_almost_equal(ada.b_, b1, decimal=2)
    assert((y1 == ada.predict(X_std)).all())
開發者ID:rasbt,項目名稱:mlxtend,代碼行數:13,代碼來源:test_adaline.py


注:本文中的mlxtend.classifier.Adaline.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。