本文整理匯總了Python中menpo.transform.Similarity類的典型用法代碼示例。如果您正苦於以下問題:Python Similarity類的具體用法?Python Similarity怎麽用?Python Similarity使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Similarity類的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_basic_2d_similarity
def test_basic_2d_similarity():
linear_component = np.array([[2, -6],
[6, 2]])
translation_component = np.array([7, -8])
h_matrix = np.eye(3, 3)
h_matrix[:-1, :-1] = linear_component
h_matrix[:-1, -1] = translation_component
similarity = Similarity(h_matrix)
x = np.array([[0, 1],
[1, 1],
[-1, -5],
[3, -5]])
# transform x explicitly
solution = np.dot(x, linear_component.T) + translation_component
# transform x using the affine transform
result = similarity.apply(x)
# check that both answers are equivalent
assert_allclose(solution, result)
# create several copies of x
x_copies = np.array([x, x, x, x, x, x, x, x])
# transform all of copies at once using the affine transform
results = similarity.apply(x_copies)
# check that all copies have been transformed correctly
for r in results:
assert_allclose(solution, r)
示例2: test_align_2d_similarity
def test_align_2d_similarity():
linear_component = np.array([[2, -6], [6, 2]])
translation_component = np.array([7, -8])
h_matrix = np.eye(3, 3)
h_matrix[:-1, :-1] = linear_component
h_matrix[:-1, -1] = translation_component
similarity = Similarity(h_matrix)
source = PointCloud(np.array([[0, 1], [1, 1], [-1, -5], [3, -5]]))
target = similarity.apply(source)
# estimate the transform from source and target
estimate = AlignmentSimilarity(source, target)
# check the estimates is correct
assert_allclose(similarity.h_matrix, estimate.h_matrix)
示例3: test_align_2d_similarity_set_h_matrix_raises_notimplemented_error
def test_align_2d_similarity_set_h_matrix_raises_notimplemented_error():
linear_component = np.array([[2, -6], [6, 2]])
translation_component = np.array([7, -8])
h_matrix = np.eye(3, 3)
h_matrix[:-1, :-1] = linear_component
h_matrix[:-1, -1] = translation_component
similarity = Similarity(h_matrix)
source = PointCloud(np.array([[0, 1], [1, 1], [-1, -5], [3, -5]]))
target = similarity.apply(source)
# estimate the transform from source to source
estimate = AlignmentSimilarity(source, source)
# and set the target
estimate.set_h_matrix(h_matrix)
示例4: noisy_align
def noisy_align(source, target, noise_std=0.04, rotation=False):
r"""
Constructs and perturbs the optimal similarity transform between source
to the target by adding white noise to its weights.
Parameters
----------
source: :class:`menpo.shape.PointCloud`
The source pointcloud instance used in the alignment
target: :class:`menpo.shape.PointCloud`
The target pointcloud instance used in the alignment
noise_std: float
The standard deviation of the white noise
Default: 0.04
rotation: boolean
If False the second parameter of the Similarity,
which captures captures inplane rotations, is set to 0.
Default:False
Returns
-------
noisy_transform : :class: `menpo.transform.Similarity`
The noisy Similarity Transform
"""
transform = AlignmentSimilarity(source, target, rotation=rotation)
parameters = transform.as_vector()
parameter_range = np.hstack((parameters[:2], target.range()))
noise = (parameter_range * noise_std *
np.random.randn(transform.n_parameters))
return Similarity.init_identity(source.n_dims).from_vector(parameters + noise)
示例5: _recursive_procrustes
def _recursive_procrustes(self):
r"""
Recursively calculates a procrustes alignment.
"""
from menpo.shape import mean_pointcloud
from menpo.transform import Similarity
if self.n_iterations > self.max_iterations:
return False
new_tgt = mean_pointcloud([t.aligned_source.points
for t in self.transforms])
# rescale the new_target to be the same size as the original about
# it's centre
rescale = Similarity.identity(new_tgt.n_dims)
s = UniformScale(self.initial_target_scale / new_tgt.norm(),
self.n_dims, skip_checks=True)
t = Translation(-new_tgt.centre, skip_checks=True)
rescale.compose_before_inplace(t)
rescale.compose_before_inplace(s)
rescale.compose_before_inplace(t.pseudoinverse)
rescale.apply_inplace(new_tgt)
# check to see if we have converged yet
delta_target = np.linalg.norm(self.target.points - new_tgt.points)
if delta_target < 1e-6:
return True
else:
self.n_iterations += 1
for t in self.transforms:
t.set_target(new_tgt)
self.target = new_tgt
return self._recursive_procrustes()
示例6: test_similarity_2d_from_vector
def test_similarity_2d_from_vector():
params = np.array([0.2, 0.1, 1, 2])
homo = np.array([[params[0] + 1, -params[1], params[2]],
[params[1], params[0] + 1, params[3]],
[0, 0, 1]])
sim = Similarity.init_identity(2).from_vector(params)
assert_equal(sim.h_matrix, homo)
示例7: test_similarity_jacobian_2d
def test_similarity_jacobian_2d():
params = np.ones(4)
t = Similarity.identity(2).from_vector(params)
explicit_pixel_locations = np.array(
[[0, 0],
[0, 1],
[0, 2],
[1, 0],
[1, 1],
[1, 2]])
dW_dp = t.d_dp(explicit_pixel_locations)
assert_equal(dW_dp, sim_jac_solution2d)
示例8: test_similarity_set_h_matrix_raises_notimplementederror
def test_similarity_set_h_matrix_raises_notimplementederror():
s = Similarity(np.eye(3))
s.set_h_matrix(s.h_matrix)
示例9: test_similarity_2d_points_raises_dimensionalityerror
def test_similarity_2d_points_raises_dimensionalityerror():
params = np.ones(4)
t = Similarity.identity(2).from_vector(params)
t.d_dp(np.ones([2, 3]))
示例10: test_similarity_jacobian_3d_raises_dimensionalityerror
def test_similarity_jacobian_3d_raises_dimensionalityerror():
t = Similarity(np.eye(4))
t.d_dp(np.ones([2, 3]))
示例11: test_similarity_identity_3d
def test_similarity_identity_3d():
assert_allclose(Similarity.identity(3).h_matrix,
np.eye(4))
示例12: test_similarity_identity_2d
def test_similarity_identity_2d():
assert_allclose(Similarity.init_identity(2).h_matrix,
np.eye(3))