本文整理匯總了Python中matplotlib.transforms.ScaledTranslation類的典型用法代碼示例。如果您正苦於以下問題:Python ScaledTranslation類的具體用法?Python ScaledTranslation怎麽用?Python ScaledTranslation使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了ScaledTranslation類的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _set_lim_and_transforms
def _set_lim_and_transforms(self):
self.transAxes = BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor
# It is assumed that this part will have non-linear components
self.transScale = TransformWrapper(IdentityTransform())
# A (possibly non-linear) projection on the (already scaled)
# data. This one is aware of rmin
self.transProjection = self.PolarTransform(self)
# This one is not aware of rmin
self.transPureProjection = self.PolarTransform(self, use_rmin=False)
# An affine transformation on the data, generally to limit the
# range of the axes
self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim)
# The complete data transformation stack -- from data all the
# way to display coordinates
self.transData = self.transScale + self.transProjection + (self.transProjectionAffine + self.transAxes)
# This is the transform for theta-axis ticks. It is
# equivalent to transData, except it always puts r == 1.0 at
# the edge of the axis circle.
self._xaxis_transform = (
self.transPureProjection + self.PolarAffine(IdentityTransform(), Bbox.unit()) + self.transAxes
)
# The theta labels are moved from radius == 0.0 to radius == 1.1
self._theta_label1_position = Affine2D().translate(0.0, 1.1)
self._xaxis_text1_transform = self._theta_label1_position + self._xaxis_transform
self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1)
self._xaxis_text2_transform = self._theta_label2_position + self._xaxis_transform
# This is the transform for r-axis ticks. It scales the theta
# axis so the gridlines from 0.0 to 1.0, now go from 0.0 to
# 2pi.
self._yaxis_transform = Affine2D().scale(np.pi * 2.0, 1.0) + self.transData
# The r-axis labels are put at an angle and padded in the r-direction
self._r_label1_position = ScaledTranslation(
22.5, self._rpad, blended_transform_factory(Affine2D(), BboxTransformToMaxOnly(self.viewLim))
)
self._yaxis_text1_transform = (
self._r_label1_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform
)
self._r_label2_position = ScaledTranslation(
22.5, -self._rpad, blended_transform_factory(Affine2D(), BboxTransformToMaxOnly(self.viewLim))
)
self._yaxis_text2_transform = (
self._r_label2_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform
)
示例2: PolarAxes
#.........這裏部分代碼省略.........
# An affine transformation on the data, generally to limit the
# range of the axes
self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim)
# The complete data transformation stack -- from data all the
# way to display coordinates
self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)
# This is the transform for theta-axis ticks. It is
# equivalent to transData, except it always puts r == 1.0 at
# the edge of the axis circle.
self._xaxis_transform = (
self.transPureProjection +
self.PolarAffine(IdentityTransform(), Bbox.unit()) +
self.transAxes)
# The theta labels are moved from radius == 0.0 to radius == 1.1
self._theta_label1_position = Affine2D().translate(0.0, 1.1)
self._xaxis_text1_transform = (
self._theta_label1_position +
self._xaxis_transform)
self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1)
self._xaxis_text2_transform = (
self._theta_label2_position +
self._xaxis_transform)
# This is the transform for r-axis ticks. It scales the theta
# axis so the gridlines from 0.0 to 1.0, now go from 0.0 to
# 2pi.
self._yaxis_transform = (
Affine2D().scale(np.pi * 2.0, 1.0) +
self.transData)
# The r-axis labels are put at an angle and padded in the r-direction
self._r_label_position = ScaledTranslation(
22.5, 0.0, Affine2D())
self._yaxis_text_transform = (
self._r_label_position +
Affine2D().scale(1.0 / 360.0, 1.0) +
self._yaxis_transform
)
def get_xaxis_transform(self,which='grid'):
assert which in ['tick1','tick2','grid']
return self._xaxis_transform
def get_xaxis_text1_transform(self, pad):
return self._xaxis_text1_transform, 'center', 'center'
def get_xaxis_text2_transform(self, pad):
return self._xaxis_text2_transform, 'center', 'center'
def get_yaxis_transform(self,which='grid'):
assert which in ['tick1','tick2','grid']
return self._yaxis_transform
def get_yaxis_text1_transform(self, pad):
angle = self._r_label_position.to_values()[4]
if angle < 90.:
return self._yaxis_text_transform, 'bottom', 'left'
elif angle < 180.:
return self._yaxis_text_transform, 'bottom', 'right'
elif angle < 270.:
return self._yaxis_text_transform, 'top', 'right'
else:
return self._yaxis_text_transform, 'top', 'left'
示例3: PolarAxes
#.........這裏部分代碼省略.........
# An affine transformation on the data, generally to limit the
# range of the axes
self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim)
# The complete data transformation stack -- from data all the
# way to display coordinates
self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)
# This is the transform for theta-axis ticks. It is
# equivalent to transData, except it always puts r == 1.0 at
# the edge of the axis circle.
self._xaxis_transform = (
self.transPureProjection +
self.PolarAffine(IdentityTransform(), Bbox.unit()) +
self.transAxes)
# The theta labels are moved from radius == 0.0 to radius == 1.1
self._theta_label1_position = Affine2D().translate(0.0, 1.1)
self._xaxis_text1_transform = (
self._theta_label1_position +
self._xaxis_transform)
self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1)
self._xaxis_text2_transform = (
self._theta_label2_position +
self._xaxis_transform)
# This is the transform for r-axis ticks. It scales the theta
# axis so the gridlines from 0.0 to 1.0, now go from 0.0 to
# 2pi.
self._yaxis_transform = (
Affine2D().scale(np.pi * 2.0, 1.0) +
self.transData)
# The r-axis labels are put at an angle and padded in the r-direction
self._r_label_position = ScaledTranslation(
22.5, 0.0, Affine2D())
self._yaxis_text_transform = (
self._r_label_position +
Affine2D().scale(1.0 / 360.0, 1.0) +
self._yaxis_transform
)
def get_xaxis_transform(self,which='grid'):
assert which in ['tick1','tick2','grid']
return self._xaxis_transform
def get_xaxis_text1_transform(self, pad):
return self._xaxis_text1_transform, 'center', 'center'
def get_xaxis_text2_transform(self, pad):
return self._xaxis_text2_transform, 'center', 'center'
def get_yaxis_transform(self,which='grid'):
assert which in ['tick1','tick2','grid']
return self._yaxis_transform
def get_yaxis_text1_transform(self, pad):
angle = self._r_label_position.to_values()[4]
if angle < 90.:
return self._yaxis_text_transform, 'bottom', 'left'
elif angle < 180.:
return self._yaxis_text_transform, 'bottom', 'right'
elif angle < 270.:
return self._yaxis_text_transform, 'top', 'right'
else:
return self._yaxis_text_transform, 'top', 'left'