本文整理匯總了Python中matplotlib.patches.Circle.set_label方法的典型用法代碼示例。如果您正苦於以下問題:Python Circle.set_label方法的具體用法?Python Circle.set_label怎麽用?Python Circle.set_label使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類matplotlib.patches.Circle
的用法示例。
在下文中一共展示了Circle.set_label方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: print
# 需要導入模塊: from matplotlib.patches import Circle [as 別名]
# 或者: from matplotlib.patches.Circle import set_label [as 別名]
(x, y) = (gps_lon[-1:], gps_lat[-1:])
# print (x, y)
# ax.plot returns a list of lines, so unpack tuple
l1, = ax.plot(x, y, 'r*', ms=8)
# anchor position platform lat and lon from config -- needs to be numpy.array([]) for ax.plot
(x, y) = (numpy.array([pi['lon']]), numpy.array([pi['lat']]))
# anchor posn platform lat and lon from netcdf file (should be the same as config)
# (x, y) = (nc.var('lon')[:], nc.var('lat')[:])
# print (x, y)
l2, = ax.plot(x, y, 'ks', ms=8, mfc='none')
# 1km watch circle, approx 111 km in 1 deg latitude 1 km is 1/111 of a deg
if 0:
wc = Circle((x,y), 1./111, alpha=0.2)
wc.set_label('1 km Watch Circle')
p = PatchCollection([wc], alpha=0.2)
ax.add_collection(p)
leg1 = ax.legend([wc], ('1 km Watch Circle',), loc='lower left')
ax.set_xlabel('Longitude (deg)')
ax.set_ylabel('Latitude (deg)')
ax.axis('equal')
dx = numpy.diff(ax.get_xlim())
dy = numpy.diff(ax.get_ylim())
# how many degrees, how many minutes, how many seconds does this span
# (deg, mm, ss) = decdeg2dms(dx)
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
# if deg>0:
示例2: watch_circle
# 需要導入模塊: from matplotlib.patches import Circle [as 別名]
# 或者: from matplotlib.patches.Circle import set_label [as 別名]
def watch_circle(pi, si, yyyy_mm, plot_type='latest'):
"""
"""
print 'plot_cr1000_gps ...'
img_dir = '/home/haines/rayleigh/img'
prev_month, this_month, next_month = procutil.find_months(yyyy_mm)
yyyy_mm_str = this_month.strftime('%Y_%m')
fn = '_'.join([pi['id'], si['id'], prev_month.strftime('%Y_%m')+'.nc'])
ncFile1= os.path.join(si['proc_dir'], fn)
fn = '_'.join([pi['id'], si['id'], this_month.strftime('%Y_%m')+'.nc'])
ncFile2= os.path.join(si['proc_dir'], fn)
# ncFile1='/seacoos/data/nccoos/level1/meet/wq/meet_wq_'+prev_month.strftime('%Y_%m')+'.nc'
# ncFile2='/seacoos/data/nccoos/level1/meet/wq/meet_wq_'+this_month.strftime('%Y_%m')+'.nc'
have_ncFile1 = os.path.exists(ncFile1)
have_ncFile2 = os.path.exists(ncFile2)
print ' ... loading data for graph from ...'
print ' ... ... ' + ncFile1 + ' ... ' + str(have_ncFile1)
print ' ... ... ' + ncFile2 + ' ... ' + str(have_ncFile2)
# open netcdf data
if have_ncFile1 and have_ncFile2:
nc = pycdf.CDFMF((ncFile1, ncFile2))
elif not have_ncFile1 and have_ncFile2:
nc = pycdf.CDFMF((ncFile2,))
elif have_ncFile1 and not have_ncFile2:
nc = pycdf.CDFMF((ncFile1,))
else:
print ' ... both files do not exist -- NO DATA LOADED'
return
# ncvars = nc.variables()
# print ncvars
es = nc.var('time')[:]
units = nc.var('time').units
dt = [procutil.es2dt(e) for e in es]
# set timezone info to UTC (since data from level1 should be in UTC!!)
dt = [e.replace(tzinfo=dateutil.tz.tzutc()) for e in dt]
# return new datetime based on computer local
dt_local = [e.astimezone(dateutil.tz.tzlocal()) for e in dt]
dn = date2num(dt)
# last dt in data for labels
dtu = dt[-1]
dtl = dt_local[-1]
diff = abs(dtu - dtl)
if diff.days>0:
last_dt_str = dtu.strftime("%H:%M %Z on %b %d, %Y") + ' (' + dtl.strftime("%H:%M %Z, %b %d") + ')'
else:
last_dt_str = dtu.strftime("%H:%M %Z") + ' (' + dtl.strftime("%H:%M %Z") + ')' \
+ dtl.strftime(" on %b %d, %Y")
#######################################
# Build Plot
#######################################
fig = figure(figsize=(6, 5))
fig.subplots_adjust(left=0.20, bottom=0.10, right=0.9, top=0.9, wspace=0.1, hspace=0.1)
ax = fig.add_subplot(1,1,1)
axs = [ax]
# GPS longitude on x, latitude on y
gps_lon = nc.var('gps_lon')[:]
gps_lat = nc.var('gps_lat')[:]
# gps_lon[-1:] returns last value as type numpy.array
# gps_lon[-1] returns the value as type float
(x, y) = (gps_lon[-1:], gps_lat[-1:])
# print (x, y)
# ax.plot returns a list of lines, so unpack tuple
l1, = ax.plot(x, y, 'r*', ms=8)
# anchor position platform lat and lon from config -- needs to be numpy.array([]) for ax.plot
(x, y) = (numpy.array([pi['lon']]), numpy.array([pi['lat']]))
# anchor posn platform lat and lon from netcdf file (should be the same as config)
# (x, y) = (nc.var('lon')[:], nc.var('lat')[:])
# print (x, y)
l2, = ax.plot(x, y, 'ks', ms=8, mfc='none')
# 1km watch circle, approx 111 km in 1 deg latitude 1 km is 1/111 of a deg
if 0:
wc = Circle((x,y), 1./111, alpha=0.2)
wc.set_label('1 km Watch Circle')
p = PatchCollection([wc], alpha=0.2)
ax.add_collection(p)
leg1 = ax.legend([wc], '1 km Watch Circle', loc='lower left')
ax.set_xlabel('Longitude (deg)')
ax.set_ylabel('Latitude (deg)')
ax.axis('equal')
# keep tick formatting from defaulting scienitific with offsets
from matplotlib.ticker import FormatStrFormatter
ax.xaxis.set_major_formatter(FormatStrFormatter('%g'))
ax.yaxis.set_major_formatter(FormatStrFormatter('%g'))
#.........這裏部分代碼省略.........