當前位置: 首頁>>代碼示例>>Python>>正文


Python LSHash.load_compress_index方法代碼示例

本文整理匯總了Python中lshash.LSHash.load_compress_index方法的典型用法代碼示例。如果您正苦於以下問題:Python LSHash.load_compress_index方法的具體用法?Python LSHash.load_compress_index怎麽用?Python LSHash.load_compress_index使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lshash.LSHash的用法示例。


在下文中一共展示了LSHash.load_compress_index方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init

# 需要導入模塊: from lshash import LSHash [as 別名]
# 或者: from lshash.LSHash import load_compress_index [as 別名]
def init():

    parser = argparse.ArgumentParser(description = 'Tools for hamming distance-based image retrieval by cuda')
    parser.add_argument('-f', help = 'The filename of image raw features (SIFT).')
    parser.add_argument('-v', default = 'fvecs', help = 'The format of image raw features.')
    parser.add_argument('-s', default = 'dict', help = 'The method of indexing storage.')
    parser.add_argument('-d', default = '128', help = 'Dimensions of raw image feature.')
    parser.add_argument('-o', default = '0', help = 'Offset of accessing raw image features.')
    parser.add_argument('-n', default = '1', help = 'Number of raw image features to read.')
    parser.add_argument('-i', default = 'n', help = 'Whether to perform indexing step.')
    parser.add_argument('-e', help = 'The dirname of indexing folder.')
    parser.add_argument('-k', default = '10', help = 'Number of retrieved images.')
    parser.add_argument('-r', default = '32', help = 'Number of dimensions randomly sampled.')
    parser.add_argument('-c', default = 'n', help = 'Whether to perform compressing step.')
    parser.add_argument('-q', default = 'n', help = 'Whether to sequentially sampling.')
    parser.add_argument('-p', default = 'n', help = 'Whether to perform querying in compressed domain.')
    parser.add_argument('-g', default = 'y', help = 'GPU mode. default is "yes".')
    parser.add_argument('-l', default = 'n', help = 'VLQ base64 mode. Load VLQ base64 encoding compressed dict.')
    parser.add_argument('-b', default = '1', help = 'Expanding level of search buckets.')
    parser.add_argument('-t', default = 'int32', help = 'FastDict type (int32, int8, string).')
 
    args = parser.parse_args()
 
    d = int(args.d)
    nuse = int(args.n)
    off = int(args.o)
    random_dims = int(args.r)
 
    random_sampling = True
    if args.q == 'y':
        random_sampling = False

    lsh = LSHash(64, d, random_sampling, args.t, random_dims, 1, storage_config = args.s, matrices_filename = 'project_plane.npz')
    np_feature_vecs = load_features(args.f, args.v, nuse, d, off)

    if args.c != 'y' and args.i != 'y' and args.e != None and args.s == 'random':
        if args.p == 'y':
            print "loading compressed index."
            lsh.load_compress_index(args.e, (args.l == 'y'))
            print "loading done."
        else:
            print "loading index."
            lsh.load_index(args.e)
            print "loading done."

    print "indexing done. Ready for querying."

    return (lsh, np_feature_vecs, args)
開發者ID:viirya,項目名稱:fastdict,代碼行數:50,代碼來源:fast_binary_server.py

示例2: main

# 需要導入模塊: from lshash import LSHash [as 別名]
# 或者: from lshash.LSHash import load_compress_index [as 別名]
def main():

    parser = argparse.ArgumentParser(description = 'Tools for hamming distance-based image retrieval by cuda')
    parser.add_argument('-f', help = 'The filename of image raw features (SIFT).')
    parser.add_argument('-v', default = 'fvecs', help = 'The format of image raw features.')
    parser.add_argument('-s', default = 'dict', help = 'The method of indexing storage.')
    parser.add_argument('-d', default = '128', help = 'Dimensions of raw image feature.')
    parser.add_argument('-o', default = '0', help = 'Offset of accessing raw image features.')
    parser.add_argument('-n', default = '1', help = 'Number of raw image features to read.')
    parser.add_argument('-i', default = 'n', help = 'Whether to perform indexing step.')
    parser.add_argument('-e', help = 'The dirname of indexing folder.')
    parser.add_argument('-k', default = '10', help = 'Number of retrieved images.')
    parser.add_argument('-r', default = '32', help = 'Number of dimensions randomly sampled.')
    parser.add_argument('-c', default = 'n', help = 'Whether to perform compressing step.')
    parser.add_argument('-q', default = 'n', help = 'Whether to sequentially sampling.')
    parser.add_argument('-p', default = 'n', help = 'Whether to perform querying in compressed domain.')
    parser.add_argument('-g', default = 'y', help = 'GPU mode. default is "yes".')
    parser.add_argument('-l', default = 'n', help = 'VLQ base64 mode. Load VLQ base64 encoding compressed dict.')
    parser.add_argument('-b', default = '1', help = 'Expanding level of search buckets.')
    parser.add_argument('-t', default = 'int32', help = 'FastDict type (int32, int8, string).')
    parser.add_argument('-u', default = 'local', help = 'CUDA client type (local, net).')
    parser.add_argument('-host', default = 'localhost', help = 'CUDA server address.')
 

    args = parser.parse_args()

    d = int(args.d)
    nuse = int(args.n)
    off = int(args.o)
    random_dims = int(args.r)

    random_sampling = True
    if args.q == 'y':
        random_sampling = False

    lsh = LSHash(64, d, random_sampling, args.t, args.u, args.host, random_dims, 1, storage_config = args.s, matrices_filename = 'project_plane.npz')
    np_feature_vecs = load_features(args.f, args.v, nuse, d, lsh, args.e, off, args.i)

    if args.c == 'y':
        if args.e != None and args.s == 'random':
            lsh.load_index(args.e)
            print "compressing index..."
            lsh.compress_index(args.e)
            print "compressing done."
        else:
            print "Please specify generated indexing file."
            sys.exit(0)

    if args.c != 'y' and args.i != 'y' and args.e != None and args.s == 'random':
        if args.p == 'y':
            print "loading compressed index."
            lsh.load_compress_index(args.e, (args.l == 'y'))
            print "loading done."
        else:
            print "loading index."
            lsh.load_index(args.e)
            print "loading done."
        if args.p != 'y':
            retrived = lsh.query(np_feature_vecs[1], num_results = int(args.k), expand_level = int(args.b), distance_func = 'hamming')
        else:
            retrived = lsh.query_in_compressed_domain(np_feature_vecs[1], num_results = int(args.k), expand_level = int(args.b), distance_func = 'hamming', gpu_mode = args.g, vlq_mode = args.l)
        print retrived
開發者ID:viirya,項目名稱:fastdict,代碼行數:64,代碼來源:fast_binary_for_indexonly.py


注:本文中的lshash.LSHash.load_compress_index方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。