本文整理匯總了Python中lib.dbtools.connections.Connections類的典型用法代碼示例。如果您正苦於以下問題:Python Connections類的具體用法?Python Connections怎麽用?Python Connections使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Connections類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: top_traded
def top_traded():
map_func = Code ("""function() {
if (this.occ_nb_replace == 0){
emit(this.cheuvreux_secid, this.turnover * this.rate_to_euro)
}
}""")
reduce_func = Code (""" function(sec_id, quantity) {
return Array.sum(quantity)
}
""")
Connections.change_connections("production")
db = Connections.getClient("MARS")["Mars"]["AlgoOrders"]
result = db.map_reduce(map_func, reduce_func, "my_result")
turnover_executed = {}
for doc in result.find():
if doc[u"_id"] is not None and doc[u"value"] > 0:
turnover_executed[int(doc[u"_id"])] = int(doc[u"value"])
sorted_x = sorted(turnover_executed.iteritems(), key= lambda x: x[1], reverse = True)
sec_ids = []
keys = []
values = []
for i in range(20):
sec_ids.append(sorted_x[i][0])
keys.append(convert_symbol(source = "security_id", dest = "security_name", value = sorted_x[i][0])[0][0])
values.append(sorted_x[i][1])
print convert_symbol(source = "security_id", dest = "security_name", value = sorted_x[i][0])
for i in range(20):
print sorted_x[i][1]
figure, ax = plt.subplots(1, 1)
ax.bar(range(20), values)
plt.show()
示例2: get_data
def get_data():
Connections.change_connections("production")
query = """ select occ.IdOccurence,
occ.SecurityRateToEuro,
occ.SecurityId,
occ.Side,
seq.StartTime,
seq.EndTime,
seq.AutomatonName,
occ.OrderDate,
seq.AutomatonStatTime,
seq.AutomatonEndTime,
seq.ExecutedAmount,
seq.ExecutedQuantity
from dm_algo..Algo_Sequence seq, dm_algo..Algo_Occurence occ
where occ.OrderDate > '20130101' and occ.OrderDate < '20130201'
and occ.IdOccurence = seq.IdOccurence
and seq.ExecutedQuantity is not NULL"""
#query = """select top 10 * from dm_algo..Algo_Occurence """
result = Connections.exec_sql("VEGA", query, as_dict = True)
print "Fetched", len(result), "lines"
keys = result[0].keys()
f = open("C:/st_sim/repository/export_cheuvreux_orders.csv", "w")
f.writelines(";".join(keys)+"\n")
for k in result:
f.writelines(";".join([str(x) for x in k.values()]) + "\n")
f.close()
示例3: daily_buy_sell
def daily_buy_sell(security_id, start, end):
db = Connections.getClient("Mars")["Mars"]["AlgoOrders"]
deals = Connections.getClient("Mars")["Mars"]["OrderDeals"]
#result_deals = deals.aggregate([{"$match": {"cheuvreux_secid": security_id, "TransactTime":{"$gte": start, "$lte": end}, "LastMkt": "BLNK"}}, {"$project": {"LastMkt": 1, "OrderQty": 1, "_id": 0}} ])
#deal_list = deals.find({"cheuvreux_secid": security_id, "TransactTime":{"$gte": start, "$lte": end}, "LastMkt": "BLNK"})
results = []
day = start
while day <= end:
result_orders = db.aggregate([{"$match": {"cheuvreux_secid": security_id, "TransactTime":{"$gte": day, "$lt": day + timedelta(days=1)}}}, {"$project": {"Side": 1, "OrderQty": 1, "_id": 0}}])
#print result_orders
buy_volume = sum([x["OrderQty"] if x["Side"] == "1" else 0 for x in result_orders["result"]])
sell_volume = sum([x["OrderQty"] if x["Side"] == "2" else 0 for x in result_orders["result"]])
result_deals = deals.aggregate([{"$match": {"cheuvreux_secid": security_id, "TransactTime":{"$gte": day, "$lte": day + timedelta(days=1)}, "LastMkt": "BLNK"}}, {"$project": {"LastMkt": 1, "LastShares": 1, "_id": 0}} ])
blink_volume = sum([x["LastShares"] for x in result_deals["result"]])
print day
print blink_volume
print buy_volume, sell_volume
results.append({"date": day, "buy_volume": buy_volume, "sell_volume": sell_volume, "blink_volume": blink_volume})
day = day + timedelta(days = 1)
df = {"date": [k["date"] for k in results],
"buy_volume" : [x["buy_volume"] for x in results],
"sell_volume" : [x["sell_volume"] for x in results],
"blink_volume" : [x["blink_volume"] for x in results]}
return pd.DataFrame(df, index = df["date"])
示例4: get_reference_param
def get_reference_param(context_id,domain_id,estimator_id):
params=pd.DataFrame()
context_name=None
#-- params
query=""" SELECT parameter_name, value, x_value
FROM QUANT..quant_param
WHERE context_id = %d and domain_id = %d and estimator_id = %d """ % (context_id,domain_id,estimator_id)
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.info('nothing in quant_param')
else:
params = pd.DataFrame.from_records(vals[0],columns=vals[1])
#-- params
query=""" SELECT context_name
FROM QUANT..context
WHERE context_id = %d and estimator_id = %d """ % (context_id,estimator_id)
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.info('nothing in context')
else:
context_name = vals[0][0][0]
return params,context_name
示例5: trade_frequency
def trade_frequency():
query = """select security_id, EXCHANGE from KGR..INDEXCOMPONENT where INDEXID = 'IND_1' and DATE = '20130905' """
result = Connections.exec_sql('KGR', query, as_dataframe = True)
eurostoxx_components = result[np.isfinite(result['security_id'])]['security_id']
#print eurostoxx_components, len(eurostoxx_components)
frame = pd.DataFrame()
frame_turnover = pd.DataFrame()
for stock in eurostoxx_components:
query = """select date, nb_deal, open_prc, high_prc, low_prc, close_prc, turnover from trading_daily where security_id = %s and trading_destination_id is NULL and DATE >= '20080101' """ % stock
trading_data = Connections.exec_sql('MARKET_DATA', query, as_dataframe = True)
trading_data.index = trading_data['date']
if( len(trading_data[np.isfinite(trading_data['nb_deal'])]) < 900):
continue
trading_data['vol'] = vol_gk(trading_data['open_prc'], trading_data['high_prc'], trading_data['low_prc'],trading_data['close_prc'], )
trading_data['ratio'] = np.sqrt(trading_data['nb_deal']) / trading_data['vol']
#trading_data['ratio'] = trading_data['nb_deal'] / trading_data['turnover']
#frame = frame.join(trading_data['nb_deal'], how = "outer", rsuffix = "%s_" % int(stock))
frame = frame.join(trading_data['ratio'], how = "outer", rsuffix = "%s_" % int(stock))
frame_turnover = frame_turnover.join(trading_data['turnover'], how = "outer", rsuffix = "%s_" % int(stock))
frame['sum'] = frame.sum(axis = 1)
frame_turnover['sum'] = frame_turnover.sum(axis = 1)
return frame, frame_turnover
示例6: ImportIndicators
def ImportIndicators(DataBase, l_indicator, perimeter, path):
outfile = open('%s/security_indicator_dump.txt' %path,'w')
Connections.change_connections('production')
cursor, cxn = Connections.getCursor(DataBase)
if perimeter == 'all':
for indicator_id in l_indicator:
query = "select ci.indicator_id, cii.name, ci.indicator_value, ci.security_id, ci.trading_destination_id ,erc.EXCHGID " \
"from MARKET_DATA..ci_security_indicator ci " \
"left join KGR..EXCHANGEREFCOMPL erc on (erc.EXCHANGE = ci.trading_destination_id) " \
"left join MARKET_DATA..ci_indicator cii on (cii.indicator_id = ci.indicator_id) " \
"where (erc.GLOBALZONEID = 1 or erc.GLOBALZONEID is NULL) and ci.indicator_id in (%s) " \
"and (ci.trading_destination_id > 0 or ci.trading_destination_id is NULL) " \
"order by ci.indicator_id, ci.security_id, ci.trading_destination_id" %(indicator_id)
cursor.execute(query)
result = cursor.fetchall()
for line in result:
if line[5] is None:
line[5] = 'AGGR'
str_line = ''
for item in line:
str_line = "%s%s;" %(str_line, item)
str_line = '%s\n' %str_line[:-1]
outfile.write(str_line)
outfile.close()
示例7: upload_file
def upload_file(filename = 'C:\st_sim\projects\FixedIncomeReferential\Datas.xlsx'):
xls = pd.ExcelFile(filename)
data = xls.parse('Paris', header = 0 )
client = Connections.getClient('HPP')
# get mapping
mapping = client['FixedIncome']['FieldMapping']
mapping_dictionary = {}
for m in mapping.find():
mapping_dictionary[m['field']] = m
print mapping_dictionary
collection = client['FixedIncome']['Referential']
collection.remove()
for i in range(len(data.index)):
row = {}
for k in data.ix[i].keys():
if k in mapping_dictionary.keys():
row[k] = mapping_dictionary[k][convertStr(data.ix[i][k], '%d/%m/%Y')]
else:
row[k] = convertStr(data.ix[i][k], '%d/%m/%Y')
#row = dict((k, convertStr(data.ix[i][k], '%d/%m/%Y')) for k in data.ix[i].keys() if k not in mapping_dictionary.keys() else (k, convertStr(data.ix[i][k], '%d/%m/%Y')) )
collection.insert(row)
print "--------------------------------------------"
for doc in collection.find():
print doc
print " "
示例8: check_db_update
def check_db_update(date):
out = False
try:
date_s = dt.datetime.strftime(date.date(),'%Y%m%d')
date_e = dt.datetime.strftime((date + dt.timedelta(days=1)).date(),'%Y%m%d')
query=""" SELECT date , jobname ,status
FROM QUANT..upd_quant_data_report
WHERE date >= '%s' and date < '%s' """ % (date_s,date_e)
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.warning('No info of curve update for date : ' + date_s)
else:
data = pd.DataFrame.from_records(vals[0],columns=vals[1])
#-- upd_quant_data
if any(data['jobname'] == 'upd_quant_data'):
out = data[data['jobname'] == 'upd_quant_data']['status'].values[0] == 'O'
#--- quant_reference_update_context
if out and any(data['jobname'] == 'quant_reference_update_context'):
out = data[data['jobname'] == 'quant_reference_update_context']['status'].values[0] == 'O'
if not out:
logging.warning('Curve database has not been update properly for date : ' + date_s)
except:
logging.error('error in check_db_update func')
return out
示例9: get_reference_run
def get_reference_run(estimator_id=None,level=None):
out=pd.DataFrame()
if estimator_id == 2:
#-- query
if level is None:
raise ValueError('level is mandatory')
elif level == 'specific':
query=""" SELECT context_id, domain_id, estimator_id, security_id, EXCHANGE, rank, active, default_context, run_id, varargin
FROM QUANT..quant_reference
WHERE security_id is not null and estimator_id = %d and active = 1
ORDER BY security_id, EXCHANGE, rank """ % (estimator_id)
elif level == 'generic':
query=""" SELECT context_id, domain_id, estimator_id, security_id, EXCHANGE, rank, active, default_context, run_id, varargin
FROM QUANT..quant_reference
WHERE security_id is null and estimator_id = %d and active = 1
ORDER BY varargin, EXCHANGE, rank """ % (estimator_id)
#-- query
vals = Connections.exec_sql('QUANT',query,schema = True)
if not vals[0]:
logging.info('nothing in quant_reference')
return out
out = pd.DataFrame.from_records(vals[0],columns=vals[1])
else:
raise ValueError('bad input estimator_id')
return out
示例10: check_db_update
def check_db_update(date):
out = False
try:
date_s = dt.datetime.strftime(date.date(),'%Y%m%d')
date_e = dt.datetime.strftime((date + dt.timedelta(days=1)).date(),'%Y%m%d')
date_f = dt.datetime.strftime((date - dt.timedelta(days=1)).date(),'%Y%m%d')
query=""" SELECT date , jobname ,status
FROM MARKET_DATA..ciupdate_report
WHERE date >= '%s' and date < '%s' """ % (date_f,date_e)
vals = Connections.exec_sql('MARKET_DATA',query,schema = True)
if not vals[0]:
logging.warning('No info of indicator update for date : ' + date_s)
else:
data = pd.DataFrame.from_records(vals[0],columns=vals[1])
#-- ciupdatesecurityindicator_all : day before
if any((data['jobname'] == 'ciupdatesecurityindicator_all') & (data['date'] >= dt.datetime.strptime(date_f,'%Y%m%d'))):
out = any(data[(data['jobname'] == 'ciupdatesecurityindicator_all') & (data['date'] >= dt.datetime.strptime(date_f,'%Y%m%d'))]['status'].values == 'O')
#-- ciupdatesecurityindicator_all : day before
if out and any((data['jobname'] == 'ciupdatesecurityindicator_ost') & (data['date'] >= dt.datetime.strptime(date_s,'%Y%m%d'))):
out = any(data[(data['jobname'] == 'ciupdatesecurityindicator_ost') & (data['date'] >= dt.datetime.strptime(date_s,'%Y%m%d'))]['status'].values == 'O')
if not out:
logging.warning('Indicator database has not been update properly for date : ' + date_s)
except:
logging.error('error in check_db_update func')
return out
示例11: extract_unique
def extract_unique(field):
client = Connections.getClient('HPP')
collection = client['FixedIncome']['Referential']
result = collection.aggregate([{'$project': {field: 1, '_id': 0}}])
a = result['result']
l = np.unique(np.array([str(x[field]) for x in result['result']]))
print l
示例12: daily_vs_auction
def daily_vs_auction():
query = """select security_id, date, turnover, close_turnover from MARKET_DATA..trading_daily where
trading_destination_id is NULL and
security_id=110 and
date > '20120101'"""
df = Connections.exec_sql("MARKET_DATA", query, as_dataframe = True)
plt.plot(df["close_turnover"], df["turnover"]-df["close_turnover"], ".")
示例13: stoxx_timeline
def stoxx_timeline():
snp = read_csv('C:/st_sim/repository/table_snp.csv', sep = ',')
snp.index = [datetime.strptime(x, '%Y-%m-%d') for x in snp['Date']]
print snp
query = """select DATE, VALUE from Market_data..HISTOINDEXTIMESERIES where INDEXID = 'IND_37' and ATTRIBUTEID = 43 and DATE > '20100101' order by DATE"""
eurostoxx = Connections.exec_sql('MARKET_DATA', query, as_dataframe = True)
eurostoxx.index = eurostoxx['DATE']
return eurostoxx, snp
示例14: algos_on_a_day
def algos_on_a_day(bloom_code, date):
db = Connections.getClient("Mars")["Mars"]["AlgoOrders"]
mapping = Connections.getClient("Mars")["Mars"]["map_tagFIX"]
strategy_name = lambda x : mapping.aggregate([{"$match":{"tag_name": "StrategyName", "tag_value": x}}])["result"][0]["strategy_name"]
security_id = int(convert_symbol(source = "bloomberg", dest = "security_id", value = bloom_code))
print security_id
date = datetime.strptime(date, '%d/%m/%Y')
date_end = date + timedelta(days = 1)
print date
result = db.aggregate([{'$match': {"cheuvreux_secid": security_id, 'SendingTime': {'$gte': date, "$lte": date_end}, 'occ_nb_replace': 0}}])
print len(result["result"])
for r in result["result"]:
#print r["StrategyName"]
print "Algo:", r["strategy_name_mapped"], "Id", r["p_cl_ord_id"], "Size:", r["OrderQty"], "StartTime:" , r["TransactTime"], "Trader:", r["TraderName"] if r.has_key("TraderName") else "-"
return result["result"]
示例15: export_to_csv
def export_to_csv(server, query, filename, delimiter = ';'):
result = Connections.exec_sql(server, query, as_dict = True)
f = open(filename, "w")
row = result[0]
f.write( delimiter.join(row.keys()) + '\n')
for row in result:
f.writelines( delimiter.join([str(x) if x else '' for x in row.values()]) + '\n')
f.close()