本文整理匯總了Python中lib.GeoMath.vecDotProduct方法的典型用法代碼示例。如果您正苦於以下問題:Python GeoMath.vecDotProduct方法的具體用法?Python GeoMath.vecDotProduct怎麽用?Python GeoMath.vecDotProduct使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lib.GeoMath
的用法示例。
在下文中一共展示了GeoMath.vecDotProduct方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: detVec
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def detVec(prim, dirVec, exception):
global epsilon
reload(GeoMath)
vec1 = GeoMath.vecNormalize(GeoMath.vecSub(list(prim.vertices()[0].point().position()), list(prim.vertices()[1].point().position())))
vec2 = GeoMath.vecNormalize(GeoMath.vecSub(list(prim.vertices()[2].point().position()), list(prim.vertices()[1].point().position())))
prim_normal = list(prim.normal())
if(list(prim_normal) != [0, 1, 0]):
# We consider that y is vertical and x horizontal
if(math.fabs(vec1[1]) > math.fabs(vec2[1])):
# If the vectors are dependent
if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
vecV = GeoMath.rotateVecByVec(vec2, prim_normal, 90)
# Quads!!
if(GeoMath.vecDotProduct(vecV, vec1) < -epsilon):
vecV = GeoMath.rotateVecByVec(vec2, prim_normal, -90)
else:
vecV = vec1
vecH = vec2
else:
# If the vectors are dependent
if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
vecV = GeoMath.rotateVecByVec(vec1, prim_normal, 90)
# Quads!!
if(GeoMath.vecDotProduct(vecV, vec2) < -epsilon):
vecV = GeoMath.rotateVecByVec(vec1, prim_normal, -90)
else:
vecV = vec2
vecH = vec1
else:
# We consider that x is vertical and z horizontal
if(math.fabs(vec1[0]) > math.fabs(vec2[0])):
# If the vectors are dependent
if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
vecV = GeoMath.rotateVecByVec(vec2, prim_normal, 90)
# Quads!!
if(GeoMath.vecDotProduct(vecV, vec1) < -epsilon):
vecV = GeoMath.rotateVecByVec(vec2, prim_normal, -90)
else:
vecV = vec1
vecH = vec2
else:
# If the vectors are dependent
if(math.fabs(GeoMath.vecDotProduct(vec1, vec2)) > epsilon):
vecV = GeoMath.rotateVecByVec(vec1, prim_normal, 90)
#Quads!!!
if(GeoMath.vecDotProduct(vecV, vec2) < -epsilon):
vecV = GeoMath.rotateVecByVec(vec1, prim_normal, -90)
else:
vecV = vec2
vecH = vec1
if(GeoMath.vecDotProduct(dirVec, vecH) < 0):
vecH = GeoMath.vecSub([0, 0, 0], vecH)
if(GeoMath.vecDotProduct(dirVec, vecV) < 0):
vecV = GeoMath.vecSub([0, 0, 0], vecV)
vecH = GeoMath.vecNormalize(vecH)
vecV = GeoMath.vecNormalize(vecV)
return vecH, vecV
示例2: getSimX
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def getSimX(self, pattern):
horizontal = abs(GeoMath.vecDotProduct(pattern.getNormal(), [1, 0, 0]))
vertical = abs(GeoMath.vecDotProduct(pattern.getNormal(), [0, 1, 0]))
oblique = abs(GeoMath.vecDotProduct(pattern.getNormal(), [1, 0, 0]))
if (horizontal > vertical and horizontal > oblique):
# return vertical simetry, but how this is the x and normal... it will be false
return self.simx[1]
if(vertical > horizontal and vertical > oblique):
# return horizontal
return self.simx[0]
if(oblique > horizontal and oblique > vertical):
# return oblique simetry
return self.simx[2]
示例3: getSimNormal
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def getSimNormal(self, pattern):
horizontal = abs(GeoMath.vecDotProduct(pattern.getNormal(), [1, 0, 0]))
vertical = abs(GeoMath.vecDotProduct(pattern.getNormal(), [0, 1, 0]))
oblique = abs(GeoMath.vecDotProduct(pattern.getNormal(), [1, 0, 0]))
if (horizontal > vertical and horizontal > oblique):
# return vertical simetry
return self.simN[1]
if(vertical > horizontal and vertical > oblique):
# return horizontal simetry
return self.simN[0]
if(oblique > horizontal and oblique > vertical):
# return oblique simetry
return self.simN[2]
示例4: bresenham
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def bresenham(Ipoint, point1, fPoint, xSize, ySize, prim, exception):
reload (GeoMath)
reload (DetermineVectors)
reload (Validator)
curPoint = point1
dirVec = GeoMath.vecNormalize(GeoMath.vecSub(fPoint, Ipoint))
# Get the horizontal and vertical vectors
xVec, yVec = DetermineVectors.DetermineVectors.detVec(prim, dirVec, exception)
xSizeVec = GeoMath.vecScalarProduct(xVec, xSize)
ySizeVec = GeoMath.vecScalarProduct(yVec, ySize)
vecToFinal = GeoMath.vecSub(curPoint, fPoint)
sizeToFinalx = abs(GeoMath.vecDotProduct(vecToFinal, xVec) / GeoMath.vecModul(xVec))
sizeToFinaly = abs(GeoMath.vecDotProduct(vecToFinal, yVec) / GeoMath.vecModul(yVec))
if(sizeToFinalx > xSize or sizeToFinaly > ySize):
pointx = GeoMath.vecPlus(curPoint, xSizeVec)
pointy = GeoMath.vecPlus(curPoint, ySizeVec)
pointxy = GeoMath.vecPlus(curPoint, xSizeVec)
pointxy = GeoMath.vecPlus(pointxy, ySizeVec)
curxVec = GeoMath.vecNormalize(GeoMath.vecSub(pointx, Ipoint))
curyVec = GeoMath.vecNormalize(GeoMath.vecSub(pointy, Ipoint))
curxyVec = GeoMath.vecNormalize(GeoMath.vecSub(pointxy, Ipoint))
# We get the max dot product, the vector nearest to line
dotx = GeoMath.vecDotProduct(curxVec, dirVec)
doty = GeoMath.vecDotProduct(curyVec, dirVec)
dotxy = GeoMath.vecDotProduct(curxyVec, dirVec)
pointsTemp = {}
if(Validator.Validator.pointInsidePrim(pointx, prim)): pointsTemp[dotx] = pointx
if(Validator.Validator.pointInsidePrim(pointy, prim)): pointsTemp[doty] = pointy
if(Validator.Validator.pointInsidePrim(pointxy, prim)): pointsTemp[dotxy] = pointxy
if(not pointsTemp):
point = list(fPoint)
else:
bestPoint = list(pointsTemp[sorted(pointsTemp)[len(pointsTemp) - 1]])
point = bestPoint
else:
point = list(fPoint)
'''
if(prim.number()==54):
print "Ipoint, fpoint"
print Ipoint, fPoint
print "pointx, pointy, pointxy"
print pointx, pointy, pointxy
print "Dots"
print dotx, doty, dotxy
print "sizes"
print sizeToFinalx, sizeToFinaly
print "Point"
print point
'''
return point
示例5: applyJoker
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def applyJoker(self, point1, point2, vecH, vecV):
vec = GeoMath.vecSub(point2, point1)
dotH = GeoMath.vecDotProduct(vec, vecH) / GeoMath.vecModul(vecH)
dotV = GeoMath.vecDotProduct(vec, vecV) / GeoMath.vecModul(vecV)
if(math.fabs(dotH) < math.fabs(dotV)):
normal = GeoMath.vecNormalize(vecH)
else:
normal = GeoMath.vecNormalize(vecV)
norV = GeoMath.vecNormalize(vecV)
norH = GeoMath.vecNormalize(vecH)
sizeX = GeoMath.vecModul(GeoMath.vecScalarProduct(norH, dotH))
sizeY = GeoMath.vecModul(GeoMath.vecScalarProduct(norV, dotV))
pointI1 = GeoMath.vecPlus(point1, GeoMath.vecScalarProduct(norH, dotH / 2))
pointI2 = GeoMath.vecPlus(pointI1, GeoMath.vecScalarProduct(norV, dotV))
return WallPattern(normal, [list(point1), pointI1, pointI2, list(point2)], [sizeX, sizeY], 0)
示例6: getBestPrimReference
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def getBestPrimReference(self, curPrim):
listPrims = self.totDes
index = 0
#More little than the possible dot
bestDot = -2
while(index < len(listPrims) and bestDot < 0.998):
#Both normals are good, because the projection will be the same
dot = GeoMath.vecDotProduct(curPrim.prim.normal(), listPrims[index].prim.normal())
if(dot > bestDot):
bestDot = dot
bestPrim = listPrims[index]
index += 1
return bestPrim
示例7: do
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def do(self, scale=False):
# Calcule points to tbn matrix
self.calculatePoints()
# Get some arbitrary vectors conected from vertices of prim
vec1 = GeoMath.vecSub(self.get_previous_point(), self.get_point_which_is_relative())
vec2 = GeoMath.vecSub(self.get_next_point(), self.get_point_which_is_relative())
# logging.debug('Two arbitrary vec1 and vec2:' + str(vec1) + ' ' + str(vec2))
# We have to know which angle reside between the two coencted vectors, to know if suposed vectors
# in tangent space will be correct
angle = GeoMath.vecDotProduct(vec1, vec2) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vec2))
angle = math.acos(angle)
angle = math.degrees(angle)
# logging.debug('Angle between vecs:' + str(angle))
# We put relative one arbitrary point to tangent space
# logging.debug('Point relative:' + str(self.get_point_which_is_relative()))
# Determine x and y vectors, now we'll have suposed horizontal and vertical vectors acording to
# prim and direction of the crack
hasTheNormalToY = GeoMath.vecDotProduct(list(self.get_prim().normal()), [0, 1, 0])
# logging.debug('Has the normal to y?:' + str(hasTheNormalToY))
if(hasTheNormalToY < (1 - epsilon) and hasTheNormalToY > (-1 + epsilon)):
vecH, vecV = DetermineVectors.DetermineVectors.detVec(self.get_prim(), [0, 1, 0], [0, 0, 1])
# logging.debug('Yes, it has the normal to y and vecs are:' + str(vecH) + ' ' + str(vecV))
else:
vecH, vecV = DetermineVectors.DetermineVectors.detVec(self.get_prim(), [0, 0, 1], [0, 0, 1])
# logging.debug('No, it isnt has the normal to y and vecs are:' + str(vecH) + ' ' + str(vecV))
# CHAPUZA CON NUMEROS COMPLEJOS!!! Precision de python pésima, 1.000000001>1?? no! y math.acos error
cosAngle = GeoMath.vecDotProduct(vecH, vec1) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vecH))
complexAngle = cmath.acos(cosAngle)
if(complexAngle.imag == 0):
angleBetweenDetVecAndVecH = math.acos(cosAngle)
else:
if(cosAngle < 0):
angleBetweenDetVecAndVecH = math.acos(-1)
else:
angleBetweenDetVecAndVecH = math.acos(1)
# Now we have to ensure that the vec1 has the same direction that the horizontal vector, if not, we
# change and the horizontal vector will be vec2. Also we have to check if the prim is not a quad,
# in this case we have to get the vertical vector from horizontal vector, rotating the known angle
# between the two vectors conected in prim (in quad we know that the angle is 90 and we already have the
# good vectors)
if((math.fabs(angleBetweenDetVecAndVecH) < epsilon) or (math.fabs(angleBetweenDetVecAndVecH) > (math.pi - epsilon))):
if(scale):
x = GeoMath.vecScalarProduct([1, 0, 0], GeoMath.vecModul(vec1))
x = [1, 0, 0]
y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
if(scale):
y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec2))
tbn = GeoMath.createTBNmatrix(self.get_previous_point(), self.get_point_which_is_relative(), self.get_next_point(), x, [0, 0], y)
else:
if(scale):
x = [1, 0, 0]
y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
if(scale):
y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec1))
tbn = GeoMath.createTBNmatrix(self.get_previous_point(), self.get_point_which_is_relative(), self.get_next_point(), y, [0, 0], x)
# logging.debug('tbn: ' + str(tbn.printAttributes()))
tbnInverse = GeoMath.Matrix(3, 3)
tbnInverse.copy(tbn)
tbnInverse.matrix3Inverse()
self.set_tbn(tbn)
self.set_tbn_inverse(tbnInverse)
示例8: defCrack
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def defCrack(self, prim, Ipoint, Fpoint, texturePrim):
reload(AutoPattern)
reload(Bresenham)
reload(Data)
reload(GeoMath)
reload(HouInterface)
global epsilon
global primnumber
# TEMP: only for debug the patterns
# Size x and size y is the valor of some material with the minor wavelength(bigger pattern)
curPoint = Ipoint
self.patternCrack[prim] = []
vertices = [list(p.point().position()) for p in prim.vertices()]
print "vertices"
print vertices
# Convert prim to tangent space of patterns
# Get some arbitrary vectors conected from vertices of prim
vec1 = GeoMath.vecSub(vertices[0], vertices[1])
vec2 = GeoMath.vecSub(vertices[2], vertices[1])
# We have to know which angle reside between the two coencted vectors, to know if suposed vectors
# in tangent space will be correct
angle = GeoMath.vecDotProduct(vec1, vec2) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vec2))
angle = math.acos(angle)
angle = math.degrees(angle)
# We put relative one arbitrary point to tangent space
pointWhichIsRelative = vertices[1]
# Determine x and y vectors, now we'll have suposed horizontal and vertical vectors acording to
# prim and direction of the crack
vecH, vecV = DetermineVectors.DetermineVectors.detVec(prim, GeoMath.vecSub(Ipoint, Fpoint), [0, 0, 1])
# CHAPUZA CON NUMEROS COMPLEJOS!!! Precision de python pésima, 1.000000001>1?? no! y math.acos error
cosAngle = GeoMath.vecDotProduct(vecH, vec1) / (GeoMath.vecModul(vec1) * GeoMath.vecModul(vecH))
complexAngle = cmath.acos(cosAngle)
if(complexAngle.imag == 0):
angleBetweenDetVecAndVecH = math.acos(cosAngle)
else:
if(cosAngle < 0):
angleBetweenDetVecAndVecH = math.acos(-1)
else:
angleBetweenDetVecAndVecH = math.acos(1)
#=======================================================================
# Now we have to ensure that the vec1 has the same direction that the horizontal vector, if not, we
# change and the horizontal vector will be vec2. Also we have to check if the prim is not a quad,
# in this case we have to get the vertical vector from horizontal vector, rotating the known angle
# between the two vectors conected in prim (in quad we know that the angle is 90 and we already have the
# good vectors)
#=======================================================================
print "Create TBN"
if((math.fabs(angleBetweenDetVecAndVecH) < epsilon) or (math.fabs(angleBetweenDetVecAndVecH) > (math.pi - epsilon))):
x = GeoMath.vecScalarProduct([1, 0, 0], GeoMath.vecModul(vec1))
y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec2))
tbn = GeoMath.createTBNmatrix(vertices[0], vertices[1], vertices[2], x, [0, 0], y)
else:
x = GeoMath.vecScalarProduct([1, 0, 0], GeoMath.vecModul(vec2))
y = GeoMath.rotateVecByVec(x, [0, 0, 1], angle)
y = GeoMath.vecScalarProduct(GeoMath.vecNormalize(y), GeoMath.vecModul(vec1))
tbn = GeoMath.createTBNmatrix(vertices[0], vertices[1], vertices[2], y, [0, 0], x)
print "Edn create tbn"
tbnInverse = GeoMath.Matrix(3, 3)
tbnInverse.copy(tbn)
tbnInverse.matrix3Inverse()
# Get the first material:
print "texture get first layer"
texture = texturePrim.getFirstLayer(Ipoint)
nextMaterial = texture.get_material()
print "end get material"
# Create status of the process to show to the user
distance_to_complete = GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint))
ui_process_status = UIProcessStatus.UIProcessStatus('crack for prim',
distance_to_complete)
while(GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint)) > epsilon):
# Print status of the process
dist = GeoMath.vecModul(GeoMath.vecSub(curPoint, Fpoint))
ui_process_status.calculate_status(dist, inverse=True)
ui_process_status.print_status()
genPattern = Data.GeneralPattern()
for wavelength in nextMaterial.mat.keys():
singleMat = nextMaterial.mat[wavelength]
setOfTypeOfPattern = CDF.cdf([[singleMat.classesAndPercentage[k], k] for k in singleMat.classesAndPercentage.keys()])
if(wavelength == 0):
nextPoint = Bresenham.Bresenham.bresenham(Ipoint, curPoint, Fpoint, setOfTypeOfPattern.getSizex(), setOfTypeOfPattern.getSizey(), prim, [1, 0, 0])
pat = AutoPattern.AutoPattern(curPoint, nextPoint, setOfTypeOfPattern, prim, wavelength, self.patternCrack, tbn, tbnInverse, pointWhichIsRelative, texture, texturePrim).pattern
genPattern.applyPattern(pat, wavelength)
# Check texture
previousTexture = texture
pii, texture = self.checkTexture(texturePrim, previousTexture, genPattern, Fpoint, nextPoint)
logging.debug('Pii defcrack: ' + str(pii))
logging.debug('CurPoint defcrack: ' + str(curPoint))
logging.debug('genPattern ' + str(genPattern.getPoints()))
'''
if(not curPoint):
curPoint=genPattern.getLastPoint()
#.........這裏部分代碼省略.........
示例9: do
# 需要導入模塊: from lib import GeoMath [as 別名]
# 或者: from lib.GeoMath import vecDotProduct [as 別名]
def do(self):
epsilon = 0.001
if (self.DEBUG):
print "REF PRIM"
print self.refPrim.prim.number()
print "########## START PATH ###############"
"""
Construct a path around refPrim with start prim "firstPrim" and goal prim "lastPrim"
if parameter minimum is true, que path is the minimum path, otherwise is the "maximum"
path (inverted heuristic, but not maximum path)
"""
count = 0
path = []
while(not path and count < 2):
count += 1
openList = []
closedList = []
connectedPrims = []
if(count == 1):
angleMin, angleMax = GeoMath.getMinMaxAngleBetweenPointsInPrim(self.lastPrim.prim, self.firstPrim.prim, self.refPrim.prim)
clockWise = max(math.fabs(angleMin), math.fabs(angleMax)) == math.fabs(angleMin)
else:
clockWise = not clockWise
if(self.DEBUG):
print "Angulo min max"
print angleMin, angleMax, clockWise
openList.append(self.firstPrim)
# Start A* search
while(len(openList) > 0 and (self.lastPrim not in closedList)):
# Get the node with more or less heuristic depending of parm minimum
if(self.minimum):
curPrim = openList[0]
del openList[0]
else:
curPrim = openList.pop()
# Switch the current prim to closest list
closedList.append(curPrim)
# Get connected primitives
connectedPrims = GeoMath.getConnectedInfoPrims(curPrim, self.partDes)
if(self.DEBUG):
print "CLOSE PRIM"
print curPrim.prim.number()
print "CONNECTED PRIMS"
print [conp.prim.number() for conp in connectedPrims]
# Clean not possible primitives(because we are go around refPrim)
for index in range(len(connectedPrims)):
conPrim = connectedPrims[index]
# angleMin, angleMax = GeoMath.getMinMaxAngleBetweenPointsInPrim(curPrim.prim, conPrim.prim, refPrim)
angleMin = angleMax = GeoMath.angleBetweenPointsByPrim(GeoMath.primBoundingBox(curPrim.prim).center(), GeoMath.primBoundingBox(conPrim.prim).center(), self.refPrim)
dot = GeoMath.vecDotProduct(self.refPrim.normal(), conPrim.prim.normal())
if(dot > 1 - epsilon):
# precision error
dot = 1
# math.acos(dot) > aperture
if(self.volume):
edges = GeoMath.getEdgesBetweenPrims(curPrim.prim, curPrim.parent.prim)
for edge in edges:
rs = RejectionSampling.RejectionSampling(edge, self.volume)
rs.do()
inicialPoint = rs.getValue()
if(inicialPoint):
break
if((not((math.acos(dot) > self.aperture) or \
(clockWise and (angleMin > 0 or angleMin < -(math.pi - math.pi * 0.1))) or \
(not clockWise and (angleMax < 0 or angleMax > (math.pi - math.pi * 0.1))) or \
(conPrim in closedList) or \
(conPrim == self.lastPrim and curPrim.sumAngle < (1.4 * math.pi))) or \
(conPrim == self.lastPrim and curPrim.sumAngle > (1.4 * math.pi))) and \
(inicialPoint or not self.volume)):
# If prim is already in openList
if(conPrim in openList):
heuristic = 1
if((curPrim.G + heuristic > conPrim.G and not self.minimum) or
(curPrim.G + heuristic < conPrim.G and self.minimum)):
# If this path is better than the path with the current parent
conPrim.setParent(curPrim)
conPrim = self.calculateHeuristic(curPrim, conPrim, self.refPrim)
if(self.volume):
conPrim.fPoint = list(inicialPoint)
curPrim.iPoint = list(inicialPoint)
if(self.DEBUG):
print "Prim aceptada y ya estaba en openlist"
print curPrim.prim.number(), conPrim.prim.number()
else:
conPrim.setParent(curPrim)
conPrim = self.calculateHeuristic(curPrim, conPrim, self.refPrim)
if(self.volume):
conPrim.fPoint = list(inicialPoint)
curPrim.iPoint = list(inicialPoint)
openList.append(conPrim)
if(self.DEBUG):
print "Prim aceptada y no estaba en openlist"
print curPrim.prim.number(), conPrim.prim.number()
# Sort nodes by heuristic
#.........這裏部分代碼省略.........