當前位置: 首頁>>代碼示例>>Python>>正文


Python utility.PathComponents類代碼示例

本文整理匯總了Python中lazyflow.utility.PathComponents的典型用法代碼示例。如果您正苦於以下問題:Python PathComponents類的具體用法?Python PathComponents怎麽用?Python PathComponents使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了PathComponents類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: configure_operator_with_parsed_args

    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        # TODO: Support image stack inputs by checking for globstrings and converting to hdf5.
        input_paths = parsed_args.input_files
        input_infos = []
        for p in input_paths:
            info = DatasetInfo()
            info.location = DatasetInfo.Location.FileSystem
    
            # Convert all paths to absolute 
            # (otherwise they are relative to the project file, which probably isn't what the user meant)        
            comp = PathComponents(p)
            comp.externalPath = os.path.abspath(comp.externalPath)
            
            info.filePath = comp.totalPath()
            info.nickname = comp.filenameBase
            input_infos.append(info)

        opDataSelection = self.topLevelOperator
        opDataSelection.DatasetGroup.resize( len(input_infos) )
        for lane_index, info in enumerate(input_infos):
            # Only one dataset role in pixel classification
            opDataSelection.DatasetGroup[lane_index][0].setValue( info )
開發者ID:lfiaschi,項目名稱:ilastik,代碼行數:28,代碼來源:dataSelectionApplet.py

示例2: configure_operator_with_parsed_args

    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        input_paths = parsed_args.input_files

        # If the user doesn't want image stacks to be copied inte the project file,
        #  we generate hdf5 volumes in a temporary directory and use those files instead.        
        if parsed_args.preconvert_stacks:
            import tempfile
            input_paths = self.convertStacksToH5( input_paths, tempfile.gettempdir() )
        
        input_infos = []
        for p in input_paths:
            info = DatasetInfo()
            info.location = DatasetInfo.Location.FileSystem
    
            # Convert all paths to absolute 
            # (otherwise they are relative to the project file, which probably isn't what the user meant)        
            comp = PathComponents(p)
            comp.externalPath = os.path.abspath(comp.externalPath)
            
            info.filePath = comp.totalPath()
            info.nickname = comp.filenameBase
            input_infos.append(info)

        opDataSelection = self.topLevelOperator
        opDataSelection.DatasetGroup.resize( len(input_infos) )
        for lane_index, info in enumerate(input_infos):
            # Only one dataset role in pixel classification
            opDataSelection.DatasetGroup[lane_index][0].setValue( info )
開發者ID:buotex,項目名稱:ilastik,代碼行數:34,代碼來源:dataSelectionApplet.py

示例3: _applyInternalPathToTempOps

 def _applyInternalPathToTempOps(self, index):
     if index == -1:
         return
     
     newInternalPath = str( self.internalDatasetNameComboBox.currentText() )
     
     # Save a copy of our settings
     oldInfos = {}
     for laneIndex, op in self.tempOps.items():
         oldInfos[laneIndex] = copy.copy( op.Dataset.value )
     
     # Attempt to apply to all temp operators
     try:
         for laneIndex, op in self.tempOps.items():
             info = copy.copy( op.Dataset.value )
             pathComponents = PathComponents(info.filePath)
             if pathComponents.internalPath != newInternalPath:
                 pathComponents.internalPath = newInternalPath
                 info.filePath = pathComponents.totalPath()
                 op.Dataset.setValue( info )
         self._error_fields.discard('Internal Dataset Name')
         return True
     except Exception as e:
         # Revert everything back to the previous state
         for laneIndex, op in self.tempOps.items():
             op.Dataset.setValue( oldInfos[laneIndex] )
         
         msg = "Could not set new internal path settings due to an exception:\n"
         msg += "{}".format( e )
         log_exception( logger, msg )
         QMessageBox.warning(self, "Error", msg)
         self._error_fields.add('Internal Dataset Name')
         return False
開發者ID:JaimeIvanCervantes,項目名稱:ilastik,代碼行數:33,代碼來源:datasetInfoEditorWidget.py

示例4: handleImportLabelsAction

        def handleImportLabelsAction():
            # Find the directory of the most recently opened image file
            mostRecentImageFile = PreferencesManager().get( 'DataSelection', 'recent image' )
            if mostRecentImageFile is not None:
                defaultDirectory = os.path.split(mostRecentImageFile)[0]
            else:
                defaultDirectory = os.path.expanduser('~')
            fileNames = DataSelectionGui.getImageFileNamesToOpen(self, defaultDirectory)
            fileNames = list(map(str, fileNames))
            
            # For now, we require a single hdf5 file
            if len(fileNames) > 1:
                QMessageBox.critical(self, "Too many files", 
                                     "Labels must be contained in a single hdf5 volume.")
                return
            if len(fileNames) == 0:
                # user cancelled
                return
            
            file_path = fileNames[0]
            internal_paths = DataSelectionGui.getPossibleInternalPaths(file_path)
            if len(internal_paths) == 0:
                QMessageBox.critical(self, "No volumes in file", 
                                     "Couldn't find a suitable dataset in your hdf5 file.")
                return
            if len(internal_paths) == 1:
                internal_path = internal_paths[0]
            else:
                dlg = H5VolumeSelectionDlg(internal_paths, self)
                if dlg.exec_() == QDialog.Rejected:
                    return
                selected_index = dlg.combo.currentIndex()
                internal_path = str(internal_paths[selected_index])

            path_components = PathComponents(file_path)
            path_components.internalPath = str(internal_path)
            
            try:
                top_op = self.topLevelOperatorView
                opReader = OpInputDataReader(parent=top_op.parent)
                opReader.FilePath.setValue( path_components.totalPath() )
                
                # Reorder the axes
                op5 = OpReorderAxes(parent=top_op.parent)
                op5.AxisOrder.setValue( top_op.LabelInputs.meta.getAxisKeys() )
                op5.Input.connect( opReader.Output )
            
                # Finally, import the labels
                top_op.importLabels( top_op.current_view_index(), op5.Output )
                    
            finally:
                op5.cleanUp()
                opReader.cleanUp()
開發者ID:DerThorsten,項目名稱:ilastik,代碼行數:53,代碼來源:pixelClassificationGui.py

示例5: generateBatchPredictions

def generateBatchPredictions(workflow, batchInputPaths, batchExportDir, batchOutputSuffix, exportedDatasetName):
    """
    Compute the predictions for each of the specified batch input files,
    and export them to corresponding h5 files.
    """
    batchInputPaths = convertStacksToH5(batchInputPaths)

    batchInputInfos = []
    for p in batchInputPaths:
        info = DatasetInfo()
        info.location = DatasetInfo.Location.FileSystem

        # Convert all paths to absolute 
        # (otherwise they are relative to the project file, which probably isn't what the user meant)        
        comp = PathComponents(p)
        comp.externalPath = os.path.abspath(comp.externalPath)
        
        info.filePath = comp.totalPath()        
        batchInputInfos.append(info)

    # Configure batch input operator
    opBatchInputs = workflow.batchInputApplet.topLevelOperator
    opBatchInputs.Dataset.setValues( batchInputInfos )
    
    # Configure batch export operator
    opBatchResults = workflow.batchResultsApplet.topLevelOperator
    opBatchResults.ExportDirectory.setValue(batchExportDir)
    opBatchResults.Format.setValue(ExportFormat.H5)
    opBatchResults.Suffix.setValue(batchOutputSuffix)
    opBatchResults.InternalPath.setValue(exportedDatasetName)
    opBatchResults.SelectedSlices.setValue([30])
    
    logger.info( "Exporting data to " + opBatchResults.OutputDataPath[0].value )

    # Set up progress display handling (just logging for now)        
    currentProgress = [None]
    def handleProgress(percentComplete):
        if currentProgress[0] != percentComplete:
            currentProgress[0] = percentComplete
            logger.info("Batch job: {}% complete.".format(percentComplete))
        
    progressSignal = opBatchResults.ProgressSignal[0].value
    progressSignal.subscribe( handleProgress )

    # Make it happen!
    result = opBatchResults.ExportResult[0].value
    return result
開發者ID:JensNRAD,項目名稱:ilastik_public,代碼行數:47,代碼來源:autocontextClassificationWorkflowMainHeadless.py

示例6: getPartiallyFormattedName

 def getPartiallyFormattedName(self, lane_index, path_format_string):
     ''' Takes the format string for the output file, fills in the most important placeholders, and returns it '''
     raw_dataset_info = self.dataSelectionApplet.topLevelOperator.DatasetGroup[lane_index][0].value
     project_path = self.shell.projectManager.currentProjectPath
     project_dir = os.path.dirname(project_path)
     dataset_dir = PathComponents(raw_dataset_info.filePath).externalDirectory
     abs_dataset_dir = make_absolute(dataset_dir, cwd=project_dir)
     known_keys = {}
     known_keys['dataset_dir'] = abs_dataset_dir
     nickname = raw_dataset_info.nickname.replace('*', '')
     if os.path.pathsep in nickname:
         nickname = PathComponents(nickname.split(os.path.pathsep)[0]).fileNameBase
     known_keys['nickname'] = nickname
     known_keys['result_type'] = self.dataExportTrackingApplet.topLevelOperator.SelectedPlugin._value
     # use partial formatting to fill in non-coordinate name fields
     partially_formatted_name = format_known_keys(path_format_string, known_keys)
     return partially_formatted_name
開發者ID:DerThorsten,項目名稱:ilastik,代碼行數:17,代碼來源:structuredTrackingWorkflow.py

示例7: getPartiallyFormattedName

    def getPartiallyFormattedName(self, lane_index: int, path_format_string: str) -> str:
        ''' Takes the format string for the output file, fills in the most important placeholders, and returns it '''

        raw_dataset_info = self.topLevelOperator.RawDatasetInfo[lane_index].value
        project_path = self.topLevelOperator.WorkingDirectory.value
        dataset_dir = PathComponents(raw_dataset_info.filePath).externalDirectory
        abs_dataset_dir = make_absolute(dataset_dir, cwd=project_path)

        nickname = raw_dataset_info.nickname.replace('*', '')
        if os.path.pathsep in nickname:
            nickname = PathComponents(nickname.split(os.path.pathsep)[0]).fileNameBase

        known_keys = {
            'dataset_dir': abs_dataset_dir,
            'nickname': nickname,
            'result_type': self.topLevelOperator.SelectedPlugin._value,
        }

        return format_known_keys(path_format_string, known_keys)
開發者ID:ilastik,項目名稱:ilastik,代碼行數:19,代碼來源:trackingBaseDataExportApplet.py

示例8: append_lane

def append_lane(workflow, input_filepath, axisorder=None):
    # Sanity checks
    assert isinstance(workflow, PixelClassificationWorkflow)
    opPixelClassification = workflow.pcApplet.topLevelOperator
    assert opPixelClassification.Classifier.ready()

    # If the filepath is a globstring, convert the stack to h5
    input_filepath = DataSelectionApplet.convertStacksToH5( [input_filepath], TMP_DIR )[0]

    info = DatasetInfo()
    info.location = DatasetInfo.Location.FileSystem
    info.filePath = input_filepath

    comp = PathComponents(input_filepath)

    # Convert all (non-url) paths to absolute 
    # (otherwise they are relative to the project file, which probably isn't what the user meant)        
    if not isUrl(input_filepath):
        comp.externalPath = os.path.abspath(comp.externalPath)
        info.filePath = comp.totalPath()
    info.nickname = comp.filenameBase
    if axisorder:
        info.axistags = vigra.defaultAxistags(axisorder)

    logger.debug( "adding lane: {}".format( info ) )

    opDataSelection = workflow.dataSelectionApplet.topLevelOperator

    # Add a lane
    num_lanes = len( opDataSelection.DatasetGroup )+1
    logger.debug( "num_lanes: {}".format( num_lanes ) )
    opDataSelection.DatasetGroup.resize( num_lanes )
    
    # Configure it.
    role_index = 0 # raw data
    opDataSelection.DatasetGroup[-1][role_index].setValue( info )

    # Sanity check
    assert len(opPixelClassification.InputImages) == num_lanes
    
    return opPixelClassification
開發者ID:stuarteberg,項目名稱:skeleton_synapses,代碼行數:41,代碼來源:old_locate_synapses.py

示例9: append_lane

def append_lane(workflow, input_filepath, axisorder=None):
    """
    Add a lane to the project file for the given input file.

    If axisorder is given, override the default axisorder for
    the file and force the project to use the given one.
    
    Globstrings are supported, in which case the files are converted to HDF5 first.
    """
    # If the filepath is a globstring, convert the stack to h5
    input_filepath = DataSelectionApplet.convertStacksToH5( [input_filepath], tempfile.mkdtemp() )[0]

    info = DatasetInfo()
    info.location = DatasetInfo.Location.FileSystem
    info.filePath = input_filepath

    comp = PathComponents(input_filepath)

    # Convert all (non-url) paths to absolute 
    # (otherwise they are relative to the project file, which probably isn't what the user meant)        
    if not isUrl(input_filepath):
        comp.externalPath = os.path.abspath(comp.externalPath)
        info.filePath = comp.totalPath()
    info.nickname = comp.filenameBase
    if axisorder:
        info.axistags = vigra.defaultAxistags(axisorder)

    logger.debug( "adding lane: {}".format( info ) )

    opDataSelection = workflow.dataSelectionApplet.topLevelOperator

    # Add a lane
    num_lanes = len( opDataSelection.DatasetGroup )+1
    logger.debug( "num_lanes: {}".format( num_lanes ) )
    opDataSelection.DatasetGroup.resize( num_lanes )
    
    # Configure it.
    role_index = 0 # raw data
    opDataSelection.DatasetGroup[-1][role_index].setValue( info )
開發者ID:stuarteberg,項目名稱:skeleton_synapses,代碼行數:39,代碼來源:locate_synapses.py

示例10: post_process_lane_export

    def post_process_lane_export(self, lane_index):
        settings, selected_features = self.trackingApplet.topLevelOperator.getLane(lane_index).get_table_export_settings()
        if settings:
            self.dataExportApplet.progressSignal.emit(0)
            raw_dataset_info = self.dataSelectionApplet.topLevelOperator.DatasetGroup[lane_index][0].value
            
            project_path = self.shell.projectManager.currentProjectPath
            project_dir = os.path.dirname(project_path)
            dataset_dir = PathComponents(raw_dataset_info.filePath).externalDirectory
            abs_dataset_dir = make_absolute(dataset_dir, cwd=project_dir)

            known_keys = {}        
            known_keys['dataset_dir'] = abs_dataset_dir
            nickname = raw_dataset_info.nickname.replace('*', '')
            if os.path.pathsep in nickname:
                nickname = PathComponents(nickname.split(os.path.pathsep)[0]).fileNameBase
            known_keys['nickname'] = nickname
            
            # use partial formatting to fill in non-coordinate name fields
            name_format = settings['file path']
            partially_formatted_name = format_known_keys( name_format, known_keys )
            settings['file path'] = partially_formatted_name

            req = self.trackingApplet.topLevelOperator.getLane(lane_index).export_object_data(
                        lane_index, 
                        # FIXME: Even in non-headless mode, we can't show the gui because we're running in a non-main thread.
                        #        That's not a huge deal, because there's still a progress bar for the overall export.
                        show_gui=False)

            req.wait()
            self.dataExportApplet.progressSignal.emit(100)
            
            # Restore state of axis ranges
            parameters = self.trackingApplet.topLevelOperator.Parameters.value
            parameters['time_range'] = self.prev_time_range
            parameters['x_range'] = self.prev_x_range
            parameters['y_range'] = self.prev_y_range
            parameters['z_range'] = self.prev_z_range          
開發者ID:JaimeIvanCervantes,項目名稱:ilastik,代碼行數:38,代碼來源:conservationTrackingWorkflow.py

示例11: create_default_headless_dataset_info

    def create_default_headless_dataset_info(cls, filepath):
        """
        filepath may be a globstring or a full hdf5 path+dataset 
        """
        comp = PathComponents(filepath)
        nickname = comp.filenameBase
        
        # Remove globstring syntax.
        if '*' in nickname:
            nickname = nickname.replace('*', '')
        if os.path.pathsep in nickname:
            nickname = PathComponents(nickname.split(os.path.pathsep)[0]).fileNameBase

        info = DatasetInfo()
        info.location = DatasetInfo.Location.FileSystem
        info.nickname = nickname
        info.filePath = filepath
        # Convert all (non-url) paths to absolute 
        # (otherwise they are relative to the project file, which probably isn't what the user meant)
        if not isUrl(filepath):
            comp.externalPath = os.path.abspath(comp.externalPath)
            info.filePath = comp.totalPath()
        return info
開發者ID:slzephyr,項目名稱:ilastik,代碼行數:23,代碼來源:dataSelectionApplet.py

示例12: setupOutputs

    def setupOutputs(self):
        self.cleanupOnDiskView()

        # FIXME: If RawData becomes unready() at the same time as RawDatasetInfo(), then 
        #          we have no guarantees about which one will trigger setupOutputs() first.
        #        It is therefore possible for 'RawDatasetInfo' to appear ready() to us, 
        #          even though it's upstream partner is UNready.  We are about to get the 
        #          unready() notification, but it will come too late to prevent our 
        #          setupOutputs method from being called.
        #        Without proper graph setup transaction semantics, we have to use this 
        #          hack as a workaround.
        try:
            rawInfo = self.RawDatasetInfo.value
        except:
            for oslot in self.outputs.values():
                if oslot.partner is None:
                    oslot.meta.NOTREADY = True
            return

        selection_index = self.InputSelection.value
        if not self.Inputs[selection_index].ready():
            for oslot in self.outputs.values():
                if oslot.partner is None:
                    oslot.meta.NOTREADY = True
            return
        self._opFormattedExport.Input.connect( self.Inputs[selection_index] )

        dataset_dir = PathComponents(rawInfo.filePath).externalDirectory
        abs_dataset_dir, _ = getPathVariants(dataset_dir, self.WorkingDirectory.value)
        known_keys = {}        
        known_keys['dataset_dir'] = abs_dataset_dir
        nickname = rawInfo.nickname.replace('*', '')
        if '//' in nickname:
            nickname = PathComponents(nickname.split('//')[0]).fileNameBase
        known_keys['nickname'] = nickname

        # Disconnect to open the 'transaction'
        if self._opImageOnDiskProvider is not None:
            self._opImageOnDiskProvider.TransactionSlot.disconnect()
        self._opFormattedExport.TransactionSlot.disconnect()

        # Blank the internal path while we manipulate the external path
        #  to avoid invalid intermediate states of ExportPath
        self._opFormattedExport.OutputInternalPath.setValue( "" )

        # use partial formatting to fill in non-coordinate name fields
        name_format = self.OutputFilenameFormat.value
        partially_formatted_name = format_known_keys( name_format, known_keys )
        
        # Convert to absolute path before configuring the internal op
        abs_path, _ = getPathVariants( partially_formatted_name, self.WorkingDirectory.value )
        self._opFormattedExport.OutputFilenameFormat.setValue( abs_path )

        # use partial formatting on the internal dataset name, too
        internal_dataset_format = self.OutputInternalPath.value 
        partially_formatted_dataset_name = format_known_keys( internal_dataset_format, known_keys )
        self._opFormattedExport.OutputInternalPath.setValue( partially_formatted_dataset_name )

        # Re-connect to finish the 'transaction'
        self._opFormattedExport.TransactionSlot.connect( self.TransactionSlot )
        if self._opImageOnDiskProvider is not None:
            self._opImageOnDiskProvider.TransactionSlot.connect( self.TransactionSlot )
        
        self.setupOnDiskView()
開發者ID:kumartr,項目名稱:ilastik,代碼行數:64,代碼來源:opDataExport.py

示例13: enumerate

    return dataset_keys

if __name__ == "__main__":
    import sys
    import argparse
    #sys.argv += "/tmp/example_slice.h5/data /tmp/example_slice2.h5/data --export_drange=(0,255) --output_format=png --pipeline_result_drange=(1,2)".split()
    
    # Construct a parser with all the 'normal' export options, and add arg for prediction_image_paths.
    parser = DataExportApplet.make_cmdline_parser( argparse.ArgumentParser() )
    parser.add_argument("prediction_image_paths", nargs='+', help="Path(s) to your exported predictions.")
    parsed_args = parser.parse_args()
    parsed_args, unused_args = DataExportApplet.parse_known_cmdline_args( sys.argv[1:], parsed_args )
    
    # As a convenience, auto-determine the internal dataset path if possible.
    for index, input_path in enumerate(parsed_args.prediction_image_paths):
        path_comp = PathComponents(input_path, os.getcwd())        
        if not parsed_args.output_internal_path:
            parsed_args.output_internal_path = "segmentation"
        if path_comp.extension in PathComponents.HDF5_EXTS and path_comp.internalDatasetName == "":            
            with h5py.File(path_comp.externalPath, 'r') as f:
                all_internal_paths = all_dataset_internal_paths(f)
    
            if len(all_internal_paths) == 1:
                path_comp.internalPath = all_internal_paths[0]
                parsed_args.prediction_image_paths[index] = path_comp.totalPath()
            elif len(all_internal_paths) == 0:
                sys.stderr.write("Could not find any datasets in your input file:\n"
                                 "{}\n".format(input_path))
                sys.exit(1)
            else:
                sys.stderr.write("Found more than one dataset in your input file:\n"
開發者ID:JaimeIvanCervantes,項目名稱:ilastik,代碼行數:31,代碼來源:convert_predictions_to_segmentation.py

示例14: filter

    f.visit(allkeys.append)
    dataset_keys = filter(lambda key: isinstance(f[key], h5py.Dataset), 
                          allkeys)
    return dataset_keys

if __name__ == "__main__":
    import sys
    import argparse
    
    # Construct a parser with all the 'normal' export options, and add arg for input_path.
    parser = DataExportApplet.make_cmdline_parser( argparse.ArgumentParser() )
    parser.add_argument("input_path", help="Path to your exported predictions.")
    parsed_args = parser.parse_args()    
    
    # As a convenience, auto-determine the internal dataset path if possible.
    path_comp = PathComponents(parsed_args.input_path, os.getcwd())
    if path_comp.extension in PathComponents.HDF5_EXTS and path_comp.internalDatasetName == "":
        
        with h5py.File(path_comp.externalPath, 'r') as f:
            all_internal_paths = all_dataset_internal_paths(f)

        if len(all_internal_paths) == 1:
            path_comp.internalPath = all_internal_paths[0]
            parsed_args.input_path = path_comp.totalPath()
        elif len(all_internal_paths) == 0:
            sys.stderr.write("Could not find any datasets in your input file.")
            sys.exit(1)
        else:
            sys.stderr.write("Found more than one dataset in your input file.\n"
                             "Please specify the dataset name, e.g. /path/to/myfile.h5/internal/dataset_name")
            sys.exit(1)
開發者ID:JaimeIvanCervantes,項目名稱:ilastik,代碼行數:31,代碼來源:convert_predictions_to_uncertainties.py

示例15: configure_operator_with_parsed_args

    def configure_operator_with_parsed_args(self, parsed_args):
        """
        Helper function for headless workflows.
        Configures this applet's top-level operator according to the settings provided in ``parsed_args``.
        
        :param parsed_args: Must be an ``argparse.Namespace`` as returned by :py:meth:`parse_known_cmdline_args()`.
        """
        role_names = self.topLevelOperator.DatasetRoles.value
        role_paths = collections.OrderedDict()
        if role_names:
            for role_index, role_name in enumerate(role_names):
                arg_name = self._role_name_to_arg_name(role_name)
                input_paths = getattr(parsed_args, arg_name)
                role_paths[role_index] = input_paths

        if parsed_args.input_files:
            # We allow the file list to go to the 'default' role, but only if no other roles were explicitly configured.
            for role_index, input_paths in role_paths.items():
                if input_paths:
                    # FIXME: This error message could be more helpful.
                    role_args = map( self._role_name_to_arg_name, role_names )
                    role_args = map( lambda s: '--' + s, role_args )
                    role_args_str = ", ".join( role_args )
                    raise Exception("Invalid command line arguments: All roles must be configured explicitly.\n"
                                    "Use the following flags to specify which files are matched with which inputs:\n"
                                    + role_args_str )
            role_paths = { 0 : parsed_args.input_files }

        for role_index, input_paths in role_paths.items():
            # If the user doesn't want image stacks to be copied into the project file,
            #  we generate hdf5 volumes in a temporary directory and use those files instead.        
            if parsed_args.preconvert_stacks:
                import tempfile
                input_paths = self.convertStacksToH5( input_paths, tempfile.gettempdir() )
            
            input_infos = []
            for p in input_paths:
                info = DatasetInfo()
                info.location = DatasetInfo.Location.FileSystem
                info.filePath = p
    
                comp = PathComponents(p)
    
                # Convert all (non-url) paths to absolute 
                # (otherwise they are relative to the project file, which probably isn't what the user meant)        
                if not isUrl(p):
                    comp.externalPath = os.path.abspath(comp.externalPath)
                    info.filePath = comp.totalPath()
                info.nickname = comp.filenameBase
                
                # Remove globstring syntax.
                if '*' in info.nickname:
                    info.nickname = info.nickname.replace('*', '')
                if os.path.pathsep in info.nickname:
                    info.nickname = PathComponents(info.nickname.split(os.path.pathsep)[0]).fileNameBase
                input_infos.append(info)
    
            opDataSelection = self.topLevelOperator
            existing_lanes = len(opDataSelection.DatasetGroup)
            opDataSelection.DatasetGroup.resize( max(len(input_infos), existing_lanes) )
            for lane_index, info in enumerate(input_infos):
                opDataSelection.DatasetGroup[lane_index][role_index].setValue( info )
            
            need_warning = False
            for lane_index in range(len(input_infos)):
                output_slot = opDataSelection.ImageGroup[lane_index][role_index]
                if output_slot.meta.prefer_2d:
                    need_warning = True
                    break

            if need_warning:
                logger.warn("*******************************************************************************************")
                logger.warn("Some of your input data is stored in a format that is not efficient for 3D access patterns.")
                logger.warn("Performance may suffer as a result.  For best performance, use a chunked HDF5 volume.")                
                logger.warn("*******************************************************************************************")
開發者ID:jakirkham,項目名稱:ilastik,代碼行數:75,代碼來源:dataSelectionApplet.py


注:本文中的lazyflow.utility.PathComponents類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。