當前位置: 首頁>>代碼示例>>Python>>正文


Python Image.from_file方法代碼示例

本文整理匯總了Python中jicbioimage.core.image.Image.from_file方法的典型用法代碼示例。如果您正苦於以下問題:Python Image.from_file方法的具體用法?Python Image.from_file怎麽用?Python Image.from_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在jicbioimage.core.image.Image的用法示例。


在下文中一共展示了Image.from_file方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_manual_image_creation_from_file

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
    def test_manual_image_creation_from_file(self):

        from jicbioimage.core.image import Image

        # Preamble: let us define the path to a TIFF file and create a numpy
        # array from it.
#       from libtiff import TIFF
#       tif = TIFF.open(path_to_tiff, 'r')
#       ar = tif.read_image()
        path_to_tiff = os.path.join(DATA_DIR, 'single-channel.ome.tif')
        use_plugin('freeimage')
        ar = imread(path_to_tiff)


        # It is possible to create an image from a file.
        image = Image.from_file(path_to_tiff)
        self.assertEqual(len(image.history), 0)
        self.assertEqual(image.history.creation,
                         'Created Image from {}'.format(path_to_tiff))

        # With name...
        image = Image.from_file(path_to_tiff, name='Test1')
        self.assertEqual(image.history.creation,
                         'Created Image from {} as Test1'.format(path_to_tiff))

        # Without history...
        image = Image.from_file(path_to_tiff, log_in_history=False)
        self.assertEqual(len(image.history), 0)

        # It is worth noting the image can support more multiple channels.
        # This is particularly important when reading in images in rgb format.
        fpath = os.path.join(DATA_DIR, 'tjelvar.png')
        image = Image.from_file(fpath)
        self.assertEqual(image.shape, (50, 50, 3))
開發者ID:JIC-CSB,項目名稱:jicbioimage.core,代碼行數:36,代碼來源:Image_functional_tests.py

示例2: sample_image_from_lines

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def sample_image_from_lines(image_file, lines_file, dilation, reduce_method):

    data_image = Image.from_file(image_file)
    line_image = Image.from_file(lines_file)

    segmented_lines = segment(line_image, dilation)

    with open("all_series.csv", "w") as fh:
        fh.write(csv_header())
        for n, line_region in enumerate(yield_line_masks(segmented_lines)):
            line_intensity = data_image * line_region
            if reduce_method == "max":
                line_profile = np.amax(line_intensity, axis=1)
            elif reduce_method == "mean":
                sum_intensity = np.sum(line_intensity, axis=1)
                sum_rows = np.sum(line_region, axis=1)
                line_profile = sum_intensity / sum_rows
            else:
                err_msg = "Unknown reduce method: {}".format(reduce_method)
                raise(RuntimeError(err_msg))

            series_filename = "series_{:02d}.csv".format(n)
            save_line_profile(series_filename, line_profile, n)

            fh.write(csv_body(line_profile, n))
開發者ID:JIC-Image-Analysis,項目名稱:profile_lines,代碼行數:27,代碼來源:profile_lines.py

示例3: test_scaling_of_written_files

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
    def test_scaling_of_written_files(self):
        from jicbioimage.core.image import Image3D, Image
        directory = os.path.join(TMP_DIR, "im3d")

        z0 = np.zeros((50,50), dtype=np.uint8)
        z1 = np.ones((50, 50), dtype=np.uint8)

        stack = np.dstack([z0, z1])
        im3d = Image3D.from_array(stack)
        im3d.to_directory(directory)

        im0 = Image.from_file(os.path.join(directory, "z0.png"))
        im1 = Image.from_file(os.path.join(directory, "z1.png"))

        self.assertTrue(np.array_equal(z0, im0))
        self.assertTrue(np.array_equal(z1*255, im1))

        z2 = np.ones((50, 50), dtype=np.uint8) * 255

        stack = np.dstack([z0, z1, z2])
        im3d = Image3D.from_array(stack)
        im3d.to_directory(directory)

        im0 = Image.from_file(os.path.join(directory, "z0.png"))
        im1 = Image.from_file(os.path.join(directory, "z1.png"))
        im2 = Image.from_file(os.path.join(directory, "z2.png"))

        self.assertTrue(np.array_equal(z0, im0))
        self.assertTrue(np.array_equal(z1, im1))
        self.assertTrue(np.array_equal(z2*255, im1))
開發者ID:JIC-CSB,項目名稱:jicbioimage.core,代碼行數:32,代碼來源:Image3D_functional_tests.py

示例4: process_single_identifier

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def process_single_identifier(dataset, identifier, output_path):

    print("Processing {}".format(identifier))

    image = Image.from_file(dataset.abspath_from_identifier(identifier))

    seeds = generate_seed_image(image, dataset, identifier)

    segmentation = segment(image, seeds)
    segmentation = filter_sides(segmentation)
    segmentation = filter_touching_border(segmentation)

    output_filename = generate_output_filename(
        dataset,
        identifier,
        output_path,
        '-segmented'
    )
    save_segmented_image_as_rgb(segmentation, output_filename)

    false_colour_filename = generate_output_filename(
        dataset,
        identifier,
        output_path,
        '-false_colour'
    )
    with open(false_colour_filename, 'wb') as fh:
        fh.write(segmentation.png())
開發者ID:JIC-Image-Analysis,項目名稱:senescence-in-field,代碼行數:30,代碼來源:explore_dataset.py

示例5: find_kilobots

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def find_kilobots(image_filename, output_filename):
    """Find kilobots in a still image file."""

    kilobot_image = Image.from_file(image_filename)
    red_only = kilobot_image[:,:,0]

    imsave('red.png', red_only)
    edges = find_edges(red_only)
    blurred = gaussian_filter(edges, sigma=2)

    # bot_template = blurred[135:185,485:535]

    # imsave('bot_template.png', bot_template)

    bot_template = load_bot_template('bot_template.png')

    match_result = skimage.feature.match_template(blurred, bot_template, pad_input=True)

    imsave('match_result.png', match_result)

    selected_area = match_result > 0.6

    imsave('selected_area.png', selected_area)

    ccs = find_connected_components(selected_area)
    centroids = component_centroids(ccs)

    return centroids
開發者ID:mrmh2,項目名稱:Kilobot-tracker,代碼行數:30,代碼來源:find_bot_template.py

示例6: find_grains

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def find_grains(input_file, output_dir=None):
    """Return tuple of segmentaitons (grains, difficult_regions)."""
    name = fpath2name(input_file)
    name = "grains-" + name + ".png"
    if output_dir:
        name = os.path.join(output_dir, name)

    image = Image.from_file(input_file)
    intensity = mean_intensity_projection(image)

# Median filter seems more robust than Otsu.
#   image = threshold_otsu(intensity)
    image = threshold_median(intensity, scale=0.8)

    image = invert(image)
    image = erode_binary(image, selem=disk(2))
    image = dilate_binary(image, selem=disk(2))
    image = remove_small_objects(image, min_size=200)
    image = fill_holes(image, min_size=50)

    dist = distance(image)
    seeds = local_maxima(dist)
    seeds = dilate_binary(seeds)  # Merge spurious double peaks.
    seeds = connected_components(seeds, background=0)

    segmentation = watershed_with_seeds(dist, seeds=seeds, mask=image)

    # Remove spurious blobs.
    segmentation = remove_large_segments(segmentation, max_size=3000)
    segmentation = remove_small_segments(segmentation, min_size=100)

    return segmentation
開發者ID:JIC-Image-Analysis,項目名稱:pollen_tubes,代碼行數:34,代碼來源:nikonE800_annotate.py

示例7: test_creating_transformations_from_scratch

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
    def test_creating_transformations_from_scratch(self):

        # What if the default names of images was just the order in which they
        # were created?
        # Or perhaps the order + the function name, e.g.
        # 1_gaussian.png
        # 2_sobel.png
        # 3_gaussian.png
        # The order could be tracked in a class variable in an AutoName
        # object. The AutoName object could also store the output directory
        # as a class variable.

        from jicbioimage.core.image import Image
        from jicbioimage.core.transform import transformation
        from jicbioimage.core.io import AutoName
        AutoName.directory = TMP_DIR

        @transformation
        def identity(image):
            return image

        image = Image.from_file(os.path.join(DATA_DIR, 'tjelvar.png'))
        image = identity(image)
        self.assertEqual(len(image.history), 1, image.history)
        self.assertEqual(str(image.history[-1]), '<History.Event(identity(image))>')
        created_fpath = os.path.join(TMP_DIR, '1_identity.png')
        self.assertTrue(os.path.isfile(created_fpath),
                        'No such file: {}'.format(created_fpath))
開發者ID:JIC-CSB,項目名稱:jicbioimage.core,代碼行數:30,代碼來源:transform_functional_tests.py

示例8: separate_plots

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def separate_plots(dataset, identifier, resource_dataset, working_dir):

    fpath = dataset.item_content_abspath(identifier)
    segmentation = load_segmentation_from_rgb_image(fpath)

    original_id = dataset.get_overlay('from')[identifier]
    original_fpath = resource_dataset.item_content_abspath(original_id)
    original_image = Image.from_file(original_fpath)

    approx_plot_locs = find_approx_plot_locs(dataset, identifier)

    sid_to_label = generate_segmentation_identifier_to_label_map(
        approx_plot_locs,
        segmentation
    )

    outputs = []

    for identifier in segmentation.identifiers:

        image_section = generate_region_image(
            original_image,
            segmentation,
            identifier
        )

        fname = 'region_{}.png'.format(sid_to_label[identifier])
        output_fpath = os.path.join(working_dir, fname)

        imsave(output_fpath, image_section)

        outputs.append((fname, {'plot_number': sid_to_label[identifier]}))

    return outputs
開發者ID:JIC-Image-Analysis,項目名稱:senescence-in-field,代碼行數:36,代碼來源:separate_plots.py

示例9: find_single_seed

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def find_single_seed(image_filename, output_filename):

    image = Image.from_file(image_filename)

    w, h = 500, 500
    tube_section = image[1024-w:1024+w,1024-h:1024+h]

    threshold = threshold_otsu(tube_section)

    thresholded = tube_section > threshold

    x, y, r = find_inner_circle_parameters(thresholded, 400, 500)

    # FIXME - think routine is finding outer circle

    stripped = strip_outside_circle(thresholded, (x, y), 300)

    eroded = binary_erosion(stripped, structure=np.ones((10, 10)))

    float_coords = map(np.mean, np.where(eroded > 0))
    ix, iy = map(int, float_coords)

    w, h = 100, 100
    selected = tube_section[ix-w:ix+w,iy-h:iy+h]

    with open(output_filename, 'wb') as f:
        f.write(selected.view(Image).png())
開發者ID:mrmh2,項目名稱:ct_pod_analysis,代碼行數:29,代碼來源:extract_one_seed.py

示例10: annotate_single_identifier

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def annotate_single_identifier(dataset, identifier, output_path):
    file_path = dataset.abspath_from_identifier(identifier)

    image = Image.from_file(file_path)
    grayscale = np.mean(image, axis=2)

    annotated = AnnotatedImage.from_grayscale(grayscale)
    xdim, ydim, _ = annotated.shape

    def annotate_location(fractional_coords):

        xfrac, yfrac = fractional_coords

        ypos = int(ydim * xfrac)
        xpos = int(xdim * yfrac)
        for x in range(-2, 3):
            for y in range(-2, 3):
                annotated.draw_cross(
                    (xpos+x, ypos+y),
                    color=(255, 0, 0),
                    radius=50
                )

    for loc in find_approx_plot_locs(dataset, identifier):
        annotate_location(loc)

    output_basename = os.path.basename(file_path)
    full_output_path = os.path.join(output_path, output_basename)
    with open(full_output_path, 'wb') as f:
        f.write(annotated.png())
開發者ID:JIC-Image-Analysis,項目名稱:senescence-in-field,代碼行數:32,代碼來源:test_tagger_data.py

示例11: find_grains

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def find_grains(input_file, output_dir=None):
    """Return tuple of segmentaitons (grains, difficult_regions)."""
    name = fpath2name(input_file)
    name = "grains-" + name + ".png"
    if output_dir:
        name = os.path.join(output_dir, name)

    image = Image.from_file(input_file)
    intensity = mean_intensity_projection(image)
    image = remove_scalebar(intensity, np.mean(intensity))
    image = threshold_abs(image, 75)
    image = invert(image)
    image = fill_holes(image, min_size=500)
    image = erode_binary(image, selem=disk(4))
    image = remove_small_objects(image, min_size=500)
    image = dilate_binary(image, selem=disk(4))

    dist = distance(image)
    seeds = local_maxima(dist)
    seeds = dilate_binary(seeds)  # Merge spurious double peaks.
    seeds = connected_components(seeds, background=0)

    segmentation = watershed_with_seeds(dist, seeds=seeds, mask=image)
    # Need a copy to avoid over-writing original.
    initial_segmentation = np.copy(segmentation)

    # Remove spurious blobs.
    segmentation = remove_large_segments(segmentation, max_size=3000)
    segmentation = remove_small_segments(segmentation, min_size=500)
    props = skimage.measure.regionprops(segmentation)
    segmentation = remove_non_round(segmentation, props, 0.6)

    difficult = initial_segmentation - segmentation

    return segmentation, difficult
開發者ID:JIC-Image-Analysis,項目名稱:pollen_tubes,代碼行數:37,代碼來源:annotate.py

示例12: generate_composite_image

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def generate_composite_image(base_image, trajectory_image):
	still_image = Image.from_file(base_image)
	trajectories = Image.from_file(trajectory_image)[:,:,0]

	annotation_points = np.where(trajectories != 0)

	color = 255, 0, 0

	for x, y in zip(*annotation_points):
		still_image[x, y] = color
		still_image[x+1, y] = color
		still_image[x-1, y] = color
		still_image[x, y+1] = color
		still_image[x, y-1] = color								

	imsave('annotated_image.png', still_image)
開發者ID:mrmh2,項目名稱:Kilobot-tracker,代碼行數:18,代碼來源:make_composite_image.py

示例13: labels_to_joined_image

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
    def labels_to_joined_image(labels):
        images = []
        for plot_label in labels:
            image_fpath = dataset.item_content_abspath(label_to_id[plot_label])
            image = Image.from_file(image_fpath)
            images.append(image)

        return join_horizontally(images)
開發者ID:JIC-Image-Analysis,項目名稱:senescence-in-field,代碼行數:10,代碼來源:plot_magic.py

示例14: load_and_downscale

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
def load_and_downscale(input_filename):
    """Load the image, covert to grayscale and downscale as needed."""

    image = Image.from_file(input_filename)
    blue_channel = image[:,:,2]
    downscaled = downscale_local_mean(blue_channel, (2, 2))

    return downscaled
開發者ID:JIC-Image-Analysis,項目名稱:yeast_growth,代碼行數:10,代碼來源:yeast_growth.py

示例15: identifiers_to_joined_image

# 需要導入模塊: from jicbioimage.core.image import Image [as 別名]
# 或者: from jicbioimage.core.image.Image import from_file [as 別名]
    def identifiers_to_joined_image(identifiers):
        images = []
        for identifier in identifiers:
            image_fpath = dataset.item_content_abspath(identifier)
            image = Image.from_file(image_fpath)
            images.append(image)

        return join_horizontally(images)
開發者ID:JIC-Image-Analysis,項目名稱:senescence-in-field,代碼行數:10,代碼來源:generate_image_series.py


注:本文中的jicbioimage.core.image.Image.from_file方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。