當前位置: 首頁>>代碼示例>>Python>>正文


Python ResultsTable.getColumn方法代碼示例

本文整理匯總了Python中ij.measure.ResultsTable.getColumn方法的典型用法代碼示例。如果您正苦於以下問題:Python ResultsTable.getColumn方法的具體用法?Python ResultsTable.getColumn怎麽用?Python ResultsTable.getColumn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ij.measure.ResultsTable的用法示例。


在下文中一共展示了ResultsTable.getColumn方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: countParticles

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
def countParticles(imp, roim, minSize, maxSize, minCircularity, maxCircularity):
	# Create a table to store the results
	table = ResultsTable()
	
	# Create the particle analyzer
	pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN, table, minSize, maxSize, minCircularity, maxCircularity)
	#pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN, table, 10, Double.POSITIVE_INFINITY, 0.5, 1.0)
	#pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA|Measurements.MEAN, table, 5, 6, 0.5, 1.0)
	pa.setRoiManager(roim)
	pa.setHideOutputImage(True)

	if pa.analyze(imp):
		print "All ok"
	else:
 		print "There was a problem in analyzing", blobs

 	areas = table.getColumn(0)
	intensities = table.getColumn(1)

	if ( (areas!=None) and (intensities!=None)):
 		for area, intensity in zip(areas,intensities): print str(area)+": "+str(intensity)
開發者ID:bnorthan,項目名稱:TrueNorthImageJScripts,代碼行數:23,代碼來源:CountParticles.py

示例2: getParticleCenters

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
def getParticleCenters(imp):
    # Create a table to store the results
    rt = ResultsTable()
    paOpts = PA.SHOW_OUTLINES \
            + PA.INCLUDE_HOLES \
            + PA.EXCLUDE_EDGE_PARTICLES
    measurements = PA.CENTROID + PA.CENTER_OF_MASS
    MINSIZE = 1000
    MAXSIZE = Double.POSITIVE_INFINITY
    pa = PA(paOpts,measurements, rt, MINSIZE, MAXSIZE)
    pa.setHideOutputImage(True)
     
    if not pa.analyze(imp):
        print "There was a problem in analyzing", imp

    # The measured centroids are listed in the first column of the results table, as a float array:
    centroids_x = rt.getColumn(rt.X_CENTROID)
    centroids_y = rt.getColumn(rt.Y_CENTROID)
    coms_x = rt.getColumn(rt.X_CENTER_OF_MASS)
    coms_y = rt.getColumn(rt.Y_CENTER_OF_MASS)

    return (centroids_x,centroids_y, coms_x, coms_y)
開發者ID:UH-LMU,項目名稱:lmu-users,代碼行數:24,代碼來源:jaakko1.py

示例3: process

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
    def process(self,imp):
        # extract nucleus channel, 8-bit and twice binned
        imp.setC(self.nucleusChannel)
        ip = imp.getChannelProcessor().duplicate()
        ip = ip.convertToByteProcessor()
        ip = ip.bin(4)
        nucleus = ImagePlus("nucleus_channel", ip)

        # threshold image and separate clumped nuclei
        IJ.run(nucleus, "Auto Threshold", "method=Otsu white setthreshold show");
        IJ.run(nucleus, "Make Binary", "thresholded remaining black");
        IJ.run(nucleus, "Watershed", "");

        directory = imp.getTitle()
        directory = directory.replace(" ", "_")\
            .replace(",", "_")\
            .replace("#", "_series")\
            .replace("...", "")\
            .replace(".","_")
        directory = os.path.join(self.exportDir, directory)
        sliceDirectory = os.path.join(directory, "slices")
        print directory
        print sliceDirectory
        if not os.path.exists(sliceDirectory):
            os.makedirs(sliceDirectory)

        # Create a table to store the results
        table = ResultsTable()

        # Create a hidden ROI manager, to store a ROI for each blob or cell
        #roim = RoiManager(True)

        # remove small particles and border particles
        pa = ParticleAnalyzer(\
            ParticleAnalyzer.ADD_TO_MANAGER | ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES,\
            Measurements.CENTER_OF_MASS,\
            table,\
            self.minArea, self.maxArea,\
            0.0,1.0)

        if pa.analyze(nucleus):
            print "All ok, number of particles: ", table.size()
        else:
            print "There was a problem in analyzing", imp, nucleus
        table.save(os.path.join(directory, "rt.csv"))

        # read the center of mass coordinates
        cmx = table.getColumn(0)
        cmy = table.getColumn(1)

        if self.debug:
            imp.show()

        i=0
        for i in range(0, min(self.nCells,table.size())):
            # ROI around the cell
            cmx = table.getValue("XM",i)
            cmy = table.getValue("YM",i)
            x = 4 * cmx - (self.boxSize - 1) / 2
            y = 4 * cmy - (self.boxSize - 1) / 2
            if (x < self.edge or y < self.edge or x > imp.getWidth() - self.edge or y > imp.getHeight() - self.edge):
                continue
            roi = Roi(x,y,self.boxSize,self.boxSize)
            imp.setRoi(roi, False)

            cellStack = ImageStack(self.boxSize, self.boxSize)

            for z in range(1, imp.getNSlices() + 1):
                imp.setSlice(z)
                for c in range(1, imp.getNChannels() + 1):
                    imp.setC(c)
                    # copy ROI to stack
                    imp.copy()
                    impSlice = imp.getClipboard()
                    cellStack.addSlice(impSlice.getProcessor())
                    if self.slices:
                        sliceTitle = "cell_%s_z%s_c%s" % (str(i).zfill(4), str(z).zfill(3), str(c))
                        print sliceTitle
                        IJ.saveAsTiff(impSlice, os.path.join(sliceDirectory, sliceTitle))
                    impSlice.close()

            title = "cell_" + str(i).zfill(4)
            cell = ImagePlus(title, cellStack)

            # save ROI image
            IJ.saveAsTiff(cell, os.path.join(directory, title))
            cell.close()

            if self.debug:
                imp.updateAndDraw()
                wait = Wait("particle done")
                wait.show()
開發者ID:UH-LMU,項目名稱:lmu-scripts,代碼行數:94,代碼來源:extract_cells.py

示例4: updatepressed

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
		def updatepressed(event):
			self.__image=IJ.getImage()
			rm = RoiManager.getInstance()
			if (rm==None): rm = RoiManager()
			rm.runCommand("reset")
			self.__image.killRoi()
			IJ.run("Threshold...")
			IJ.setAutoThreshold(self.__image, "MaxEntropy")
			
			rt=ResultsTable()
			pa=ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER+ParticleAnalyzer.CLEAR_WORKSHEET , Measurements.AREA+Measurements.ELLIPSE+Measurements.MEAN, rt, 0.00, 10000.00, 0.00, 1.00)
			pa.analyze(self.__image)
			self.__roisArray=[]
			self.__roisArray=rm.getRoisAsArray()
			#for i in range(rm.getCount()) : 
			#	rm.select(i)
			#	rm.runCommand("Set Color", "0000FF", 2)
				
			IJ.resetThreshold(self.__image)
			rt.show("tempRT")
			areas=rt.getColumn(ResultsTable.AREA)
			means=rt.getColumn(ResultsTable.MEAN)
			majors=rt.getColumn(ResultsTable.MAJOR)
			minors=rt.getColumn(ResultsTable.MINOR)
			#print 0
			if self.__slidersDict["Area_max"].getMaximum() <  int(max(areas)+1):
			#	print 1
				self.__slidersDict["Area_max"].setMaximum(int(max(areas))+1)
			if self.__slidersDict["Area_min"].getMaximum() < int(max(areas)+1):
			#	print 2
				self.__slidersDict["Area_min"].setMaximum(int(max(areas))+1)
			if self.__slidersDict["Mean_max"].getMaximum() < int(max(means)+1):
			#	print 3
				self.__slidersDict["Mean_max"].setMaximum(int(max(means))+1)
			if self.__slidersDict["Mean_min"].getMaximum() < int(max(means)+1):
			#	print 4
				self.__slidersDict["Mean_min"].setMaximum(int(max(means))+1)
			if self.__slidersDict["Major_max"].getMaximum() < int(max(majors)):
			#	print 5
				self.__slidersDict["Major_max"].setMaximum(int(max(majors))+1)
			if self.__slidersDict["Major_min"].getMaximum() < int(max(majors)+1):
			#	print 6
				self.__slidersDict["Major_min"].setMaximum(int(max(majors))+1)
			if self.__slidersDict["Minor_max"].getMaximum() < int(max(minors)+1):
			#	print 7
				self.__slidersDict["Minor_max"].setMaximum(int(max(minors))+1)
			if self.__slidersDict["Minor_min"].getMaximum() < int(max(minors)+1):
			#	print 8
				self.__slidersDict["Minor_min"].setMaximum(int(max(minors))+1)
			if self.__slidersDict["AR_max"].getMaximum() < int((max(majors)+1)/min(minors)+1):
			#	print 9
				self.__slidersDict["AR_max"].setMaximum(int((max(majors)+1)/(min(minors))))
			if self.__slidersDict["AR_min"].getMaximum() < int((max(majors)+1)/min(minors)):
			#	print 10
				self.__slidersDict["AR_min"].setMaximum(int((max(majors)+1)/(min(minors))))

			#print 11
				
			for sb in self.__slidersDict.values():
				sb.repaint()

			#rm.runCommand("reset")
			#temprois=self.getIncludeRois()
			#IJ.run(self.__image, "Remove Overlay", "")
			#o=Overlay()
			#for roi in temprois:
			#	o.addElement(roi)
			#self.__image.killRoi()
			#self.__image.setOverlay(o)
			self.__image.updateAndDraw()
開發者ID:leec13,項目名稱:MorphoBactPy,代碼行數:72,代碼來源:RangeRois.py

示例5: PointRoi

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
                table.setValue("TRACK_ID", rowNumber, id)
                table.setValue("POSITION_X", rowNumber, x)
                table.setValue("POSITION_Y", rowNumber, y)
                table.setValue("FRAME", rowNumber, t)
                table.setValue("MEAN_INTENSITY", rowNumber, mean)
                table.setValue("STANDARD_DEVIATION", rowNumber, std)
                table.setValue("SNR", rowNumber, snr)
                rowNumber = rowNumber + 1

#                roi1 = PointRoi(x/dx, y/dy)
#                roi1.setPosition(int(t))
#                rm.add(imp, roi1, nextRoi)
#                nextRoi = nextRoi+1
            
            frame = table.getColumn(3)
            mean = table.getColumn(4)
            std = table.getColumn(5)
            snr = table.getColumn(6)
            var = [s / m for s,m in zip(std, mean)]
            
            from collections import Counter as Counter
            idxvec = [item for item, count in Counter(frame).items() if count > 1]

            if idxvec == []:
                continue
            division = min(idxvec)
            idx = frame.index(division)+1
            mean = mean[:idx]
            frame = frame[:idx]
            std = std[:idx]
開發者ID:bramalingam,項目名稱:Omero-Imagej-Scripts,代碼行數:32,代碼來源:Mitotic_Tracker_Final.py

示例6: RoiManager

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
roim = RoiManager(True)
# Create a ParticleAnalyzer, with arguments:
# 1. options (could be SHOW_ROI_MASKS, SHOW_OUTLINES, SHOW_MASKS, SHOW_NONE, ADD_TO_MANAGER, and others; combined with bitwise-or)
# 2. measurement options (see [http://imagej.net/developer/api/ij/measure/Measurements.html Measurements])
# 3. a ResultsTable to store the measurements
# 4. The minimum size of a particle to consider for measurement
# 5. The maximum size (idem)
# 6. The minimum circularity of a particle
# 7. The maximum circularity
pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 0, Double.POSITIVE_INFINITY, 0.0, 1.0)
pa.setHideOutputImage(True)
 
if pa.analyze(imp):
  print "All ok"
else:
  print "There was a problem in analyzing", blobs
 
# The measured areas are listed in the first column of the results table, as a float array:
areas = table.getColumn(0)

# Create a new list to store the mean intensity values of each blob:
means = []
 
for roi in RoiManager.getInstance().getRoisAsArray():
  blobs.setRoi(roi)
  stats = blobs.getStatistics(Measurements.MEAN)
  means.append(stats.mean)

for area, mean in zip(areas, means):
  print area, mean
開發者ID:jrminter,項目名稱:OSImageAnalysis,代碼行數:32,代碼來源:exemplarOne_.py

示例7: analyze

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]

#.........這裏部分代碼省略.........
  imp = ic.run("Subtract create 32-bit stack", imp, imp_avg);
 
  #
  # REGION SEGMENTATION
  #
  
  imp1 = Duplicator().run(imp, 1, imp.getImageStackSize()-1)
  imp2 = Duplicator().run(imp, 2, imp.getImageStackSize())
  imp_diff = ic.run("Subtract create 32-bit stack", imp1, imp2);
  #imp_diff.show()

  IJ.run(imp_diff, "Z Project...", "projection=[Standard Deviation]");
  imp_diff_sd = IJ.getImage()
 
  # save
  IJ.run(imp_diff_sd, "Gaussian Blur...", "sigma=5");
  output_file = filename+"--sd.tif"
  IJ.saveAs(imp_diff_sd, "TIFF", os.path.join(output_folder, output_file))
  tbModel.setFileAPth(output_folder, output_file, iDataSet, "SD","IMG")

  IJ.run(imp_diff_sd, "Enhance Contrast", "saturated=0.35");
  IJ.run(imp_diff_sd, "8-bit", "");
  IJ.run(imp_diff_sd, "Properties...", "unit=p pixel_width=1 pixel_height=1 voxel_depth=1");
  IJ.run(imp_diff_sd, "Auto Local Threshold", "method=Niblack radius=60 parameter_1=2 parameter_2=0 white");
  
  rm = ROIManipulator.getEmptyRm()
  IJ.run(imp_diff_sd, "Analyze Particles...", "add");


  # select N largest Rois
  diameter_roi = []
  for i in range(rm.getCount()):
    roi = rm.getRoi(i)
    diameter_roi.append([roi.getFeretsDiameter(), roi])
  diameter_roi = sorted(diameter_roi, reverse=True)
  #print diameter_roi

  rm.reset()
  for i in range(min(len(diameter_roi), p["n_rois"])):
    rm.addRoi(diameter_roi[i][1]) 
  
  # save 
  output_file = filename+"--rois"
  ROIManipulator.svRoisToFl(output_folder, output_file, rm.getRoisAsArray())  
  tbModel.setFileAPth(output_folder, output_file+".zip", iDataSet, "REGIONS","ROI")

   
  #
  # FFT in each region
  #

  IJ.run(imp, "Variance...", "radius=2 stack");
  output_file = filename+"--beats.tif"
  IJ.saveAs(imp, "TIFF", os.path.join(output_folder, output_file))
  tbModel.setFileAPth(output_folder, output_file, iDataSet, "BEATS","IMG")
  
  n = rm.getCount()
  for i_roi in range(n):
    imp_selection = Duplicator().run(imp)
    rm.select(imp_selection, i_roi)
    IJ.run(imp_selection, "Clear Outside", "stack");
    imp_selection.show()
    
    # FFT using Parallel FFTJ
    transformer = FloatTransformer(imp_selection.getStack())
    transformer.fft()
    imp_fft = transformer.toImagePlus(SpectrumType.FREQUENCY_SPECTRUM)
    imp_fft.show()

    # Analyze FFt
    IJ.run(imp_fft, "Gaussian Blur 3D...", "x=0 y=0 z=1.5");
    IJ.run(imp_fft, "Plot Z-axis Profile", "");
    output_file = filename+"--Region"+str(i_roi+1)+"--fft.tif"
    IJ.saveAs(IJ.getImage(), "TIFF", os.path.join(output_folder, output_file))
    tbModel.setFileAPth(output_folder, output_file, iDataSet, "FFT_R"+str(i_roi+1),"IMG")

    IJ.run(imp_fft, "Select All", "");
    rm.addRoi(imp_fft.getRoi())
    rm.select(rm.getCount())
    rt = ResultsTable()
    rt = rm.multiMeasure(imp_fft); #print(rt.getColumnHeadings);
    x = rt.getColumn(rt.getColumnIndex("Mean1"))
    #rm.runCommand("delete")
    
    peak_height_pos = []
    x_min = 10
    for i in range(x_min,len(x)/2):
      before = x[i-1]
      center = x[i]
      after = x[i+1]
      if (center>before) and (center>after):
        peak_height_pos.append([float(x[i]),i])
        
    if len(peak_height_pos)>0:
      peak_height_pos = sorted(peak_height_pos, reverse=True)
    
    n_max = 3
    for i_max in range(min(len(peak_height_pos),n_max)):
      tbModel.setNumVal(round(float(len(x))/float(peak_height_pos[i_max][1]),2), iDataSet, "F"+str(i_max+1)+"_R"+str(i_roi+1))
      tbModel.setNumVal(int(peak_height_pos[i_max][0]), iDataSet, "A"+str(i_max+1)+"_R"+str(i_roi+1))
開發者ID:tischi,項目名稱:francesca-beats,代碼行數:104,代碼來源:francesca---beating_cardiomyocytes.py

示例8: procOneImage

# 需要導入模塊: from ij.measure import ResultsTable [as 別名]
# 或者: from ij.measure.ResultsTable import getColumn [as 別名]
def procOneImage(pathpre, wnumber, endings):
  """ Analyzes a single image set (Dapi, VSVG, PM images)
  pathpre: fullpath prefix, down till "endings". 
  endings: a dictionary with signiture for three different channels. 
  wnumber: a number in string, indicating the spot ID.
  Returns three results tables. 
  """
  imp = IJ.openImage(pathpre + endings['dapi'] + '.tif')
  impVSVG = IJ.openImage(pathpre + endings['vsvg'] + '.tif')
  impPM = IJ.openImage(pathpre + endings['pm'] + '.tif')
  imp2 = imp.duplicate()

  rtallcellPM = ResultsTable()
  rtjnucVSVG = ResultsTable()
  rtallcellVSVG = ResultsTable()

  backVSVG = backgroundSubtraction(impVSVG)
  backPM = backgroundSubtraction(impPM)
  impfilteredNuc = nucleusSegmentation(imp2)

  intmax = impfilteredNuc.getProcessor().getMax()
  if intmax == 0:
    return rtallcellPM, rtjnucVSVG, rtallcellVSVG

  impfilteredNuc.getProcessor().setThreshold(1, intmax, ImageProcessor.NO_LUT_UPDATE)
  nucroi = ThresholdToSelection().convert(impfilteredNuc.getProcessor())
  nucroiA = ShapeRoi(nucroi).getRois()
#print nucroiA
  allcellA = [roiEnlarger(r) for r in nucroiA]
  jnucroiA = [roiRingGenerator(r) for r in nucroiA]
#print allcellA
  print 'Detected Cells: ', len(jnucroiA)  
  if len(jnucroiA) <2:
      print "measurement omitted, as there is only on nucleus detected"
      return  rtallcellPM, rtjnucVSVG, rtallcellVSVG
  if (GUIMODE):
    rm = RoiManager()
    for r in jnucroiA:
      rm.addRoi(r)
    rm.show()
    impfilteredNuc.show()
  

  measOpt = PA.AREA + PA.MEAN + PA.CENTROID + PA.STD_DEV + PA.SHAPE_DESCRIPTORS + PA.INTEGRATED_DENSITY + PA.MIN_MAX +\
    PA.SKEWNESS + PA.KURTOSIS + PA.MEDIAN + PA.MODE

## All Cell Plasma Membrane intensity
  measureROIs(impPM, measOpt, rtallcellPM, allcellA, backPM, True)
  meanInt_Cell = rtallcellPM.getColumn(rtallcellPM.getColumnIndex('Mean'))
  print "Results Table rownumber:", len(meanInt_Cell)
# JuxtaNuclear VSVG intensity 
  measureROIs(impVSVG, measOpt, rtjnucVSVG, jnucroiA, backVSVG, False)    
  meanInt_jnuc = rtjnucVSVG.getColumn(rtjnucVSVG.getColumnIndex('Mean'))

# AllCell VSVG intensity 
  measureROIs(impVSVG, measOpt, rtallcellVSVG, allcellA, backVSVG, True)    
  meanInt_vsvgall = rtallcellVSVG.getColumn(rtallcellVSVG.getColumnIndex('Mean'))
  
#Calculation of Transport Ratio JuxtaNuclear VSVG intensity / All Cell Plasma Membrane intensity results will be appended to PM results table.
  for i in range(len(meanInt_Cell)):
    if meanInt_Cell[i] != 0.0:
      transportR = meanInt_jnuc[i] / meanInt_Cell[i]
      transportRall = meanInt_vsvgall[i] / meanInt_Cell[i]
    else:
      transportR = float('inf')
      transportRall = float('inf')
    rtjnucVSVG.setValue('TransportRatio', i, transportR)
    rtallcellVSVG.setValue('TransportRatio', i, transportRall)
    rtjnucVSVG.setValue('WellNumber', i, int(wnumber)) 
    rtallcellVSVG.setValue('WellNumber', i, int(wnumber))
    rtallcellPM.setValue('WellNumber', i, int(wnumber)) 
  return rtallcellPM, rtjnucVSVG, rtallcellVSVG
開發者ID:cmci,項目名稱:HTManalysisCourse,代碼行數:74,代碼來源:measTransportBatch3.py


注:本文中的ij.measure.ResultsTable.getColumn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。