當前位置: 首頁>>代碼示例>>Python>>正文


Python HRLutils.set_seed方法代碼示例

本文整理匯總了Python中hrlproject.misc.HRLutils.set_seed方法的典型用法代碼示例。如果您正苦於以下問題:Python HRLutils.set_seed方法的具體用法?Python HRLutils.set_seed怎麽用?Python HRLutils.set_seed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在hrlproject.misc.HRLutils的用法示例。


在下文中一共展示了HRLutils.set_seed方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_gridworld

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_gridworld(args, seed=None):

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    net = nef.Network("run_gridworld")

    stateN = 400
    stateD = 2
    actions = [("up", [0, 1]), ("right", [1, 0]),
               ("down", [0, -1]), ("left", [-1, 0])]

    agent = smdpagent.SMDPAgent(stateN, stateD, actions, stateradius=3,
                                **args)
    net.add(agent)

    env = gridworldenvironment.GridWorldEnvironment(
        stateD, actions, HRLutils.datafile("smallgrid.txt"), cartesian=True,
        delay=(0.6, 0.9), datacollection=False)
    net.add(env)

    net.connect(env.getOrigin("state"), agent.getTermination("state_input"))
    net.connect(env.getOrigin("reward"), agent.getTermination("reward"))
    net.connect(env.getOrigin("reset"), agent.getTermination("reset"))
    net.connect(env.getOrigin("learn"), agent.getTermination("learn"))
    net.connect(env.getOrigin("reset"), agent.getTermination("save_state"))
    net.connect(env.getOrigin("reset"), agent.getTermination("save_action"))

    net.connect(agent.getOrigin("action_output"), env.getTermination("action"))
    net.connect(agent.getOrigin("Qs"), env.getTermination("Qs"))

    net.add_to_nengo()
    view = timeview.View(net.network, update_frequency=5)
    view.add_watch(gridworldwatch.GridWorldWatch())
    view.restore()
開發者ID:drasmuss,項目名稱:nhrlmodel,代碼行數:38,代碼來源:run.py

示例2: gen_evalpoints

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def gen_evalpoints(filename, seed=None):
    """Runs an environment for some length of time and records state values,
    to be used as eval points for agent initialization.

    :param filename: name of file in which to save eval points
    :param seed: random seed
    """

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    net = nef.Network("gen_evalpoints")

    contextD = 2
    actions = [("up", [0, 1]), ("right", [1, 0]),
               ("down", [0, -1]), ("left", [-1, 0])]

    rewards = {"a": 1, "b": 1}

    env = contextenvironment.ContextEnvironment(
        actions, HRLutils.datafile("contextmap.bmp"), contextD, rewards,
        imgsize=(5, 5), dx=0.001, placedev=0.5,
        colormap={-16777216: "wall", -1: "floor", -256: "a", -2088896: "b"})

    net.add(env)

    stateD = len(env.placecells) + contextD
    actions = env.actions
    actionD = len(actions)

    class EvalRecorder(nef.SimpleNode):
        def __init__(self, evalfile):
            self.action = actions[0]
            self.evalpoints = []
            self.evalfile = evalfile

            nef.SimpleNode.__init__(self, "EvalRecorder")

        def tick(self):
            if self.t % 0.1 < 0.001:
                self.evalpoints += [self.state]

            if self.t % 10.0 < 0.001:
                if len(self.evalpoints) > 10000:
                    self.evalpoints = self.evalpoints[len(self.evalpoints) -
                                                      10000:]

                with open(self.evalfile, "w") as f:
                    f.write("\n".join([" ".join([str(x) for x in e])
                                       for e in self.evalpoints]))

        def termination_state(self, x, dimensions=stateD):
            self.state = x

        def termination_action_in(self, x, dimensions=actionD):
            self.action = actions[x.index(max(x))]

        def origin_action_out(self):
            return self.action[1]

    em = EvalRecorder(HRLutils.datafile("%s_%s.txt" % (filename, seed)))
    net.add(em)

    net.connect(em.getOrigin("action_out"), env.getTermination("action"))
    net.connect(env.getOrigin("optimal_move"), em.getTermination("action_in"))
    net.connect(env.getOrigin("placewcontext"), em.getTermination("state"))

#     net.add_to_nengo()
    net.run(10)
開發者ID:drasmuss,項目名稱:nhrlmodel,代碼行數:72,代碼來源:run.py

示例3: run_badreenvironment

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_badreenvironment(nav_args, ctrl_args, bias=0.0, seed=None, flat=False,
                         label="tmp"):
    """Runs the model on the Badre et al. (2010) task."""

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    net = nef.Network("run_badreenvironment")

    env = badreenvironment.BadreEnvironment(flat=flat)
    net.add(env)

    # ##NAV AGENT
    stateN = 500
    max_state_input = 3
    enc = env.gen_encoders(stateN, 0, 0.0)

    # generate evaluation points
    orientations = MU.I(env.num_orientations)
    shapes = MU.I(env.num_shapes)
    colours = MU.I(env.num_colours)
    evals = (list(MU.diag([3 for _ in range(env.stateD)])) +
             [o + s + c
              for o in orientations for s in shapes for c in colours])

    # create lower level
    nav_agent = smdpagent.SMDPAgent(stateN, env.stateD, env.actions,
                                    name="NavAgent",
                                    stateradius=max_state_input,
                                    state_encoders=enc, state_evals=evals,
                                    discount=0.5, **nav_args)
    net.add(nav_agent)

    print "agent neurons:", nav_agent.countNeurons()

    # actions terminate on fixed schedule (aligned with environment)
    nav_term_node = terminationnode.TerminationNode(
        {terminationnode.Timer((0.6, 0.6)): None}, env, name="NavTermNode",
        state_delay=0.1, reset_delay=0.05, reset_interval=0.1)
    net.add(nav_term_node)

    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("reset"))
    net.connect(nav_term_node.getOrigin("learn"),
                nav_agent.getTermination("learn"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("save_state"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("save_action"))

    net.connect(nav_agent.getOrigin("action_output"),
                env.getTermination("action"))

    # ##CTRL AGENT
    stateN = 500
    enc = RandomHypersphereVG().genVectors(stateN, env.stateD)
    actions = [("shape", [0, 1]), ("orientation", [1, 0]), ("null", [0, 0])]
    ctrl_agent = smdpagent.SMDPAgent(stateN, env.stateD, actions,
                                     name="CtrlAgent", state_encoders=enc,
                                     stateradius=max_state_input,
                                     state_evals=evals, discount=0.4,
                                     **ctrl_args)
    net.add(ctrl_agent)

    print "agent neurons:", ctrl_agent.countNeurons()

    net.connect(env.getOrigin("state"),
                ctrl_agent.getTermination("state_input"))

    ctrl_term_node = terminationnode.TerminationNode(
        {terminationnode.Timer((0.6, 0.6)): None}, env, name="CtrlTermNode",
        state_delay=0.1, reset_delay=0.05, reset_interval=0.1)
    net.add(ctrl_term_node)

    net.connect(ctrl_term_node.getOrigin("reset"),
                ctrl_agent.getTermination("reset"))
    net.connect(ctrl_term_node.getOrigin("learn"),
                ctrl_agent.getTermination("learn"))
    net.connect(ctrl_term_node.getOrigin("reset"),
                ctrl_agent.getTermination("save_state"))
    net.connect(ctrl_term_node.getOrigin("reset"),
                ctrl_agent.getTermination("save_action"))

    # ctrl gets a slight bonus if it selects a rule (as opposed to null), to
    # encourage it to not just pick null all the time
    reward_relay = net.make("reward_relay", 1, 3, mode="direct")
    reward_relay.fixMode()
    net.connect(env.getOrigin("reward"), reward_relay,
                transform=[[1], [0], [0]])
    net.connect(ctrl_agent.getOrigin("action_output"), reward_relay,
                transform=[[0, 0], [1, 0], [0, 1]])

    net.connect(reward_relay, ctrl_agent.getTermination("reward"),
                func=lambda x: ((x[0] + bias * abs(x[0]))
                                if x[1] + x[2] > 0.5 else x[0]),
                origin_name="ctrl_reward")

    # ideal reward function (for testing)
#     def ctrl_reward_func(x):
#.........這裏部分代碼省略.........
開發者ID:drasmuss,項目名稱:nhrlmodel,代碼行數:103,代碼來源:run.py

示例4: run_flat_delivery

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_flat_delivery(args, seed=None):
    """Runs the model on the delivery task with only one hierarchical level."""

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    net = nef.Network("run_flat_delivery")

    if "load_weights" in args and args["load_weights"] is not None:
        args["load_weights"] += "_%s" % seed

    stateN = 1200
    contextD = 2
    context_scale = 1.0
    max_state_input = 2
    actions = [("up", [0, 1]), ("right", [1, 0]),
               ("down", [0, -1]), ("left", [-1, 0])]

    # ##ENVIRONMENT

    env = deliveryenvironment.DeliveryEnvironment(
        actions, HRLutils.datafile("contextmap.bmp"),
        colormap={-16777216: "wall", -1: "floor", -256: "a", -2088896: "b"},
        imgsize=(5, 5), dx=0.001, placedev=0.5)
    net.add(env)

    print "generated", len(env.placecells), "placecells"

    # ##NAV AGENT

    enc = env.gen_encoders(stateN, contextD, context_scale)
    enc = MU.prod(enc, 1.0 / max_state_input)

    with open(HRLutils.datafile("contextbmp_evalpoints_%s.txt" % seed)) as f:
        evals = [[float(x) for x in l.split(" ")] for l in f.readlines()]

    nav_agent = smdpagent.SMDPAgent(stateN, len(env.placecells) + contextD,
                                    actions, name="NavAgent",
                                    state_encoders=enc, state_evals=evals,
                                    state_threshold=0.8, **args)
    net.add(nav_agent)

    print "agent neurons:", nav_agent.countNeurons()

    net.connect(nav_agent.getOrigin("action_output"),
                env.getTermination("action"))
    net.connect(env.getOrigin("placewcontext"),
                nav_agent.getTermination("state_input"))

    nav_term_node = terminationnode.TerminationNode(
        {terminationnode.Timer((0.6, 0.9)): None}, env, name="NavTermNode",
        contextD=2)
    net.add(nav_term_node)
    net.connect(env.getOrigin("context"),
                nav_term_node.getTermination("context"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("reset"))
    net.connect(nav_term_node.getOrigin("learn"),
                nav_agent.getTermination("learn"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("save_state"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("save_action"))

    reward_relay = net.make("reward_relay", 1, 1, mode="direct")
    reward_relay.fixMode()
    net.connect(env.getOrigin("reward"), reward_relay)
    net.connect(nav_term_node.getOrigin("pseudoreward"), reward_relay)
    net.connect(reward_relay, nav_agent.getTermination("reward"))

    # period to save weights (realtime, not simulation time)
    weight_save = 600.0
    HRLutils.WeightSaveThread(nav_agent.getNode("QNetwork").saveParams,
                              os.path.join("weights", "%s_%s" %
                                           (nav_agent.name, seed)),
                              weight_save).start()

    # data collection node
    data = datanode.DataNode(period=5,
                             filename=HRLutils.datafile("dataoutput_%s.txt" %
                                                        seed))
    net.add(data)
    q_net = nav_agent.getNode("QNetwork")
    data.record_avg(env.getOrigin("reward"))
    data.record_avg(q_net.getNode("actionvals").getOrigin("X"))
    data.record_sparsity(q_net.getNode("state_pop").getOrigin("AXON"))
    data.record_avg(q_net.getNode("valdiff").getOrigin("X"))
    data.record_avg(nav_agent.getNode("ErrorNetwork").getOrigin("error"))

#    net.add_to_nengo()
#    net.run(10000)
    net.view()
開發者ID:drasmuss,項目名稱:nhrlmodel,代碼行數:95,代碼來源:run.py

示例5: run_deliveryenvironment

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_deliveryenvironment(navargs, ctrlargs, tag=None, seed=None):
    """Runs the model on the delivery task.

    :param navargs: kwargs for the nav_agent (see SMDPAgent.__init__)
    :param ctrlargs: kwargs for the ctrl_agent (see SMDPAgent.__init__)
    :param tag: string appended to datafiles associated with this run
    :param seed: random seed used for this run
    """

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    if tag is None:
        tag = str(seed)

    net = nef.Network("runDeliveryEnvironment", seed=seed)

    stateN = 1200  # number of neurons to use in state population
    contextD = 2  # dimension of context vector
    context_scale = 1.0  # relative scale of context vector vs state vector
    max_state_input = 2  # maximum length of input vector to state population

    # labels and vectors corresponding to basic actions available to the system
    actions = [("up", [0, 1]), ("right", [1, 0]),
               ("down", [0, -1]), ("left", [-1, 0])]

    if "load_weights" in navargs and navargs["load_weights"] is not None:
        navargs["load_weights"] += "_%s" % tag
    if "load_weights" in ctrlargs and ctrlargs["load_weights"] is not None:
        ctrlargs["load_weights"] += "_%s" % tag

    # ##ENVIRONMENT

    env = deliveryenvironment.DeliveryEnvironment(
        actions, HRLutils.datafile("contextmap.bmp"),
        colormap={-16777216: "wall", -1: "floor", -256: "a", -2088896: "b"},
        imgsize=(5, 5), dx=0.001, placedev=0.5)
    net.add(env)

    print "generated", len(env.placecells), "placecells"

    # ##NAV AGENT

    # generate encoders and divide them by max_state_input (so that inputs
    # will be scaled down to radius 1)
    enc = env.gen_encoders(stateN, contextD, context_scale)
    enc = MU.prod(enc, 1.0 / max_state_input)

    # read in eval points from file
    with open(HRLutils.datafile("contextbmp_evalpoints_%s.txt" % tag)) as f:
        evals = [[float(x) for x in l.split(" ")] for l in f.readlines()]

    nav_agent = smdpagent.SMDPAgent(stateN, len(env.placecells) + contextD,
                                    actions, name="NavAgent",
                                    state_encoders=enc, state_evals=evals,
                                    state_threshold=0.8,
                                    **navargs)
    net.add(nav_agent)

    print "agent neurons:", nav_agent.countNeurons()

    # output of nav_agent is what goes to the environment
    net.connect(nav_agent.getOrigin("action_output"),
                env.getTermination("action"))

    # termination node for nav_agent (just a timer that goes off regularly)
    nav_term_node = terminationnode.TerminationNode(
        {terminationnode.Timer((0.6, 0.9)): None}, env, contextD=2,
        name="NavTermNode")
    net.add(nav_term_node)

    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("reset"))
    net.connect(nav_term_node.getOrigin("learn"),
                nav_agent.getTermination("learn"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("save_state"))
    net.connect(nav_term_node.getOrigin("reset"),
                nav_agent.getTermination("save_action"))

    # ##CTRL AGENT

    # actions corresponding to "go to A" or "go to B"
    actions = [("a", [0, 1]), ("b", [1, 0])]
    ctrl_agent = smdpagent.SMDPAgent(stateN, len(env.placecells) + contextD,
                                     actions, name="CtrlAgent",
                                     state_encoders=enc, state_evals=evals,
                                     state_threshold=0.8, **ctrlargs)
    net.add(ctrl_agent)

    print "agent neurons:", ctrl_agent.countNeurons()

    # ctrl_agent gets environmental state and reward
    net.connect(env.getOrigin("placewcontext"),
                ctrl_agent.getTermination("state_input"))
    net.connect(env.getOrigin("reward"),
                ctrl_agent.getTermination("reward"))

    # termination node for ctrl_agent (terminates whenever the agent is in the
#.........這裏部分代碼省略.........
開發者ID:drasmuss,項目名稱:nhrlmodel,代碼行數:103,代碼來源:run.py

示例6: run_contextenvironment

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_contextenvironment(args, seed=None):
    """Runs the model on the context task.

    :param args: kwargs for the agent
    :param seed: random seed
    """

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    net = nef.Network("runContextEnvironment")

    if "load_weights" in args and args["load_weights"] is not None:
        args["load_weights"] += "_%s" % seed

    stateN = 1200  # number of neurons to use in state population
    contextD = 2  # dimension of context vector
    context_scale = 1.0  # scale of context representation
    max_state_input = 2  # max length of input vector for state population
    # actions (label and vector) available to the system
    actions = [("up", [0, 1]), ("right", [1, 0]),
               ("down", [0, -1]), ("left", [-1, 0])]

    # context labels and rewards for achieving those context goals
    rewards = {"a": 1.5, "b": 1.5}

    env = contextenvironment.ContextEnvironment(
        actions, HRLutils.datafile("contextmap.bmp"), contextD, rewards,
        colormap={-16777216: "wall", -1: "floor", -256: "a", -2088896: "b"},
        imgsize=(5, 5), dx=0.001, placedev=0.5)
    net.add(env)

    print "generated", len(env.placecells), "placecells"

    # termination node for agent (just goes off on some regular interval)
    term_node = terminationnode.TerminationNode(
        {terminationnode.Timer((0.6, 0.9)): 0.0}, env)
    net.add(term_node)

    # generate encoders and divide by max_state_input (so that all inputs
    # will end up being radius 1)
    enc = env.gen_encoders(stateN, contextD, context_scale)
    enc = MU.prod(enc, 1.0 / max_state_input)

    # load eval points from file
    with open(HRLutils.datafile("contextbmp_evalpoints_%s.txt" % seed)) as f:
        print "loading contextbmp_evalpoints_%s.txt" % seed
        evals = [[float(x) for x in l.split(" ")] for l in f.readlines()]

    agent = smdpagent.SMDPAgent(stateN, len(env.placecells) + contextD,
                                actions, state_encoders=enc, state_evals=evals,
                                state_threshold=0.8, **args)
    net.add(agent)

    print "agent neurons:", agent.countNeurons()

    # period to save weights (realtime, not simulation time)
    weight_save = 600.0
    t = HRLutils.WeightSaveThread(agent.getNode("QNetwork").saveParams,
                                  os.path.join("weights", "%s_%s" %
                                               (agent.name, seed)),
                                  weight_save)
    t.start()

    # data collection node
    data = datanode.DataNode(period=5,
                             filename=HRLutils.datafile("dataoutput_%s.txt" %
                                                        seed))
    net.add(data)
    q_net = agent.getNode("QNetwork")
    data.record(env.getOrigin("reward"))
    data.record(q_net.getNode("actionvals").getOrigin("X"), func=max)
    data.record(q_net.getNode("actionvals").getOrigin("X"), func=min)
    data.record_sparsity(q_net.getNode("state_pop").getOrigin("AXON"))
    data.record_avg(q_net.getNode("valdiff").getOrigin("X"))
    data.record_avg(env.getOrigin("state"))

    net.connect(env.getOrigin("placewcontext"),
                agent.getTermination("state_input"))
    net.connect(env.getOrigin("reward"), agent.getTermination("reward"))
    net.connect(term_node.getOrigin("reset"), agent.getTermination("reset"))
    net.connect(term_node.getOrigin("learn"), agent.getTermination("learn"))
    net.connect(term_node.getOrigin("reset"),
                agent.getTermination("save_state"))
    net.connect(term_node.getOrigin("reset"),
                agent.getTermination("save_action"))

    net.connect(agent.getOrigin("action_output"), env.getTermination("action"))

#    net.add_to_nengo()
#    net.run(2000)
    net.view()

    t.stop()
開發者ID:drasmuss,項目名稱:nhrlmodel,代碼行數:97,代碼來源:run.py

示例7: run_badreenvironment

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_badreenvironment(nav_args, ctrl_args, seed=None, flat=False):
    
    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED
    
    net = nef.Network("run_badreenvironment")

    env = badreenvironment.BadreEnvironment(flat=flat)
    net.add(env)

    ###NAV AGENT
    stateN = 500
    max_state_input = 2
    enc = env.gen_encoders(stateN, 0, 1.0)
    enc = MU.prod(enc, 1.0 / max_state_input)

#    with open(HRLutils.datafile("badre_evalpoints.txt")) as f:
#        evals = [[float(x) for x in l.split(" ")] for l in f.readlines()]
    orientations = MU.I(env.num_orientations)
    shapes = MU.I(env.num_shapes)
    colours = MU.I(env.num_colours)
    evals = list(MU.I(env.stateD)) + \
            [o+s+c for o in orientations for s in shapes for c in colours]

    nav_agent = smdpagent.SMDPAgent(stateN, env.stateD,
                                    env.actions, name="NavAgent",
                                    load_weights=None,
                                    state_encoders=enc, state_evals=evals,
                                    discount=0.4, **nav_args)
    net.add(nav_agent)

    print "agent neurons:", nav_agent.countNeurons()

    nav_term_node = terminationnode.TerminationNode({terminationnode.Timer((0.6, 0.6)):None}, env,
                                                    name="NavTermNode", state_delay=0.1)
    net.add(nav_term_node)

    net.connect(nav_term_node.getOrigin("reset"), nav_agent.getTermination("reset"))
    net.connect(nav_term_node.getOrigin("learn"), nav_agent.getTermination("learn"))
    net.connect(nav_term_node.getOrigin("reset"), nav_agent.getTermination("save_state"))
    net.connect(nav_term_node.getOrigin("reset"), nav_agent.getTermination("save_action"))

    net.connect(nav_agent.getOrigin("action_output"), env.getTermination("action"))

    ###CTRL AGENT
    enc = env.gen_encoders(stateN, 0, 0)
    enc = MU.prod(enc, 1.0 / max_state_input)
    actions = [("shape", [0, 1]), ("orientation", [1, 0]), ("null", [0, 0])]
    ctrl_agent = smdpagent.SMDPAgent(stateN, env.stateD, actions, name="CtrlAgent",
                                     load_weights=None, state_encoders=enc,
                                     state_evals=evals, discount=0.4, **ctrl_args)
    net.add(ctrl_agent)

    print "agent neurons:", ctrl_agent.countNeurons()

    net.connect(env.getOrigin("state"), ctrl_agent.getTermination("state_input"))

    ctrl_term_node = terminationnode.TerminationNode({terminationnode.Timer((0.6, 0.6)):None},
                                                     env, name="CtrlTermNode",
                                                     state_delay=0.1)
    net.add(ctrl_term_node)

    net.connect(ctrl_term_node.getOrigin("reset"), ctrl_agent.getTermination("reset"))
    net.connect(ctrl_term_node.getOrigin("learn"), ctrl_agent.getTermination("learn"))
    net.connect(ctrl_term_node.getOrigin("reset"), ctrl_agent.getTermination("save_state"))
    net.connect(ctrl_term_node.getOrigin("reset"), ctrl_agent.getTermination("save_action"))
    
    
    ## reward for nav/ctrl
    reward_relay = net.make("reward_relay", 1, 2, mode="direct")
    reward_relay.fixMode()
    net.connect(env.getOrigin("reward"), reward_relay, transform=[[1], [0]])
    net.connect(ctrl_agent.getOrigin("action_output"), reward_relay, transform=[[0, 0], [1, 1]])
    
    # nav reward is just environment
    net.connect(reward_relay, nav_agent.getTermination("reward"), 
                func=lambda x: x[0], origin_name="nav_reward")
    
    # ctrl gets a slight bonus if it selects a rule (as opposed to null), to encourage it not
    # to just pick null all the time
    net.connect(reward_relay, ctrl_agent.getTermination("reward"), 
                func=lambda x: x[0]+0.25*abs(x[0]) if x[1] > 0.5 else x[0], origin_name="ctrl_reward")

    ## state for navagent controlled by ctrlagent
#    ctrl_output_relay = net.make("ctrl_output_relay", 1, env.stateD+2, mode="direct")
#    ctrl_output_relay.fixMode()
    ctrl_output_relay = net.make_array("ctrl_output_relay", 50, env.stateD,
                                       radius=2, mode=HRLutils.SIMULATION_MODE)
    ctrl_output_relay.fixMode([SimulationMode.DEFAULT, SimulationMode.RATE])
    
    inhib_matrix = [[0,-5]]*50*env.num_orientations + \
                   [[-5,0]]*50*env.num_shapes + \
                   [[-5,-5]]*50*env.num_colours

    # ctrl output inhibits all the non-selected aspects of the state
    net.connect(env.getOrigin("state"), ctrl_output_relay)
    net.connect(ctrl_agent.getOrigin("action_output"), ctrl_output_relay,
#                transform=zip([0]*env.num_orientations + [-1]*(env.num_shapes+env.num_colours),
#                              [-1]*env.num_orientations + [0]*env.num_shapes + [-1]*env.num_colours))
#.........這裏部分代碼省略.........
開發者ID:Seanny123,項目名稱:HRL_1.0,代碼行數:103,代碼來源:run.py

示例8: run_flat_delivery

# 需要導入模塊: from hrlproject.misc import HRLutils [as 別名]
# 或者: from hrlproject.misc.HRLutils import set_seed [as 別名]
def run_flat_delivery(args, seed=None):
    """Runs the model on the delivery task with only one hierarchical level."""

    if seed is not None:
        HRLutils.set_seed(seed)
    seed = HRLutils.SEED

    net = nef.Network("run_flat_delivery")

    if args.has_key("load_weights") and args["load_weights"] is not None:
        args["load_weights"] += "_%s" % seed

    stateN = 1200
    contextD = 2
    context_scale = 1.0
    max_state_input = 2
    actions = [("up", [0, 1]), ("right", [1, 0]), ("down", [0, -1]), ("left", [-1, 0])]

    ###ENVIRONMENT

    env = deliveryenvironment.DeliveryEnvironment(actions, HRLutils.datafile("contextmap.bmp"),
                                                  colormap={-16777216:"wall",
                                                           - 1:"floor",
                                                           - 256:"a",
                                                           - 2088896:"b"},
                                                  imgsize=(5, 5), dx=0.001, placedev=0.5)
    net.add(env)

    print "generated", len(env.placecells), "placecells"

    ###NAV AGENT

    enc = env.gen_encoders(stateN, contextD, context_scale)
    enc = MU.prod(enc, 1.0 / max_state_input)

    with open(HRLutils.datafile("contextbmp_evalpoints_%s.txt" % seed)) as f:
        evals = [[float(x) for x in l.split(" ")] for l in f.readlines()]

    nav_agent = smdpagent.SMDPAgent(stateN, len(env.placecells) + contextD, actions, name="NavAgent",
                                    state_encoders=enc, state_evals=evals, state_threshold=0.8,
                                    **args)
    net.add(nav_agent)

    print "agent neurons:", nav_agent.countNeurons()

    # Connect the agents actions to the environment so the agent can act upon the environment
    net.connect(nav_agent.getOrigin("action_output"), env.getTermination("action"))
    # Connect the environment state to the agent, so the agent knows the effect of it's action
    net.connect(env.getOrigin("placewcontext"), nav_agent.getTermination("state_input"))
#    net.connect(env.getOrigin("reward"), nav_agent.getTermination("reward"))
#    net.connect(env.getOrigin("optimal_move"), nav_agent.getTermination("bg_input"))

    # termination node for nav_agent (just a timer that goes off regularly)
    nav_term_node = terminationnode.TerminationNode({terminationnode.Timer((0.6, 0.9)):None}, env,
                                                    name="NavTermNode", contextD=2)
    net.add(nav_term_node)
    net.connect(env.getOrigin("context"), nav_term_node.getTermination("context"))
    net.connect(nav_term_node.getOrigin("reset"), nav_agent.getTermination("reset"))
    net.connect(nav_term_node.getOrigin("learn"), nav_agent.getTermination("learn"))
    net.connect(nav_term_node.getOrigin("reset"), nav_agent.getTermination("save_state"))
    net.connect(nav_term_node.getOrigin("reset"), nav_agent.getTermination("save_action"))

    # WTF why not connect directly? # Maybe this is the only way to make a direct connection between outputs in this version of Nengo?
    reward_relay = net.make("reward_relay", 1, 1, mode="direct")
    reward_relay.fixMode()
    net.connect(env.getOrigin("reward"), reward_relay)
    net.connect(nav_term_node.getOrigin("pseudoreward"), reward_relay)
    net.connect(reward_relay, nav_agent.getTermination("reward"))

    #save weights
    weight_save = 600.0 #period to save weights (realtime, not simulation time)
    HRLutils.WeightSaveThread(nav_agent.getNode("QNetwork").saveParams,
                     os.path.join("weights", "%s_%s" % (nav_agent.name, seed)), weight_save).start()

    #data collection node
    data = datanode.DataNode(period=5, show_plots=None, filename=HRLutils.datafile("dataoutput_%s.txt" % seed))
    net.add(data)
    #data.record_avg(env.getOrigin("reward"), filter=1e-5)
    #data.record_avg(nav_agent.getNode("QNetwork").getNode("actionvals").getOrigin("X"), filter=1e-5)
    #data.record_sparsity(nav_agent.getNode("QNetwork").getNode("state_pop").getOrigin("AXON"), filter=1e-5)
    #data.record_avg(nav_agent.getNode("QNetwork").getNode("valdiff").getOrigin("X"), filter=1e-5)
    # ErrorNetwork is apparently not the correct name and hell if I know what the correct one is
    #data.record_avg(nav_agent.getNode("ErrorNetwork").getOrigin("error"), filter=1e-5)

    # Try recording everything

    net.add_to_nengo()
    net.view()
開發者ID:Seanny123,項目名稱:HRL_1.0,代碼行數:90,代碼來源:run.py


注:本文中的hrlproject.misc.HRLutils.set_seed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。