當前位置: 首頁>>代碼示例>>Python>>正文


Python image_processing.PLATFORM_SCHEMA類代碼示例

本文整理匯總了Python中homeassistant.components.image_processing.PLATFORM_SCHEMA的典型用法代碼示例。如果您正苦於以下問題:Python PLATFORM_SCHEMA類的具體用法?Python PLATFORM_SCHEMA怎麽用?Python PLATFORM_SCHEMA使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了PLATFORM_SCHEMA類的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: async_setup_platform

    'fr',
    'gb',
    'kr',
    'kr2',
    'mx',
    'sg',
    'us',
    'vn2'
]

CONF_ALPR_BIN = 'alp_bin'

DEFAULT_BINARY = 'alpr'

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_REGION): vol.All(vol.Lower, vol.In(OPENALPR_REGIONS)),
    vol.Optional(CONF_ALPR_BIN, default=DEFAULT_BINARY): cv.string,
})


async def async_setup_platform(hass, config, async_add_entities,
                               discovery_info=None):
    """Set up the OpenALPR local platform."""
    command = [config[CONF_ALPR_BIN], '-c', config[CONF_REGION], '-']
    confidence = config[CONF_CONFIDENCE]

    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(OpenAlprLocalEntity(
            camera[CONF_ENTITY_ID], command, confidence, camera.get(CONF_NAME)
        ))
開發者ID:Martwall,項目名稱:home-assistant,代碼行數:31,代碼來源:openalpr_local.py

示例2: import

import requests
import voluptuous as vol

from homeassistant.core import split_entity_id
import homeassistant.helpers.config_validation as cv
from homeassistant.components.image_processing import (
    PLATFORM_SCHEMA, ImageProcessingFaceEntity, CONF_SOURCE, CONF_ENTITY_ID,
    CONF_NAME)
from homeassistant.const import (CONF_IP_ADDRESS, CONF_PORT)

_LOGGER = logging.getLogger(__name__)

CLASSIFIER = 'facebox'

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_IP_ADDRESS): cv.string,
    vol.Required(CONF_PORT): cv.port,
})


def encode_image(image):
    """base64 encode an image stream."""
    base64_img = base64.b64encode(image).decode('ascii')
    return {"base64": base64_img}


def get_matched_faces(faces):
    """Return the name and rounded confidence of matched faces."""
    return {face['name']: round(face['confidence'], 2)
            for face in faces if face['matched']}

開發者ID:W00D00,項目名稱:home-assistant,代碼行數:30,代碼來源:facebox.py

示例3: validate_attributes

]

CONF_ATTRIBUTES = 'attributes'
DEFAULT_ATTRIBUTES = [ATTR_AGE, ATTR_GENDER]


def validate_attributes(list_attributes):
    """Validate face attributes."""
    for attr in list_attributes:
        if attr not in SUPPORTED_ATTRIBUTES:
            raise vol.Invalid("Invalid attribtue {0}".format(attr))
    return list_attributes


PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Optional(CONF_ATTRIBUTES, default=DEFAULT_ATTRIBUTES):
        vol.All(cv.ensure_list, validate_attributes),
})


@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
    """Set up the Microsoft Face detection platform."""
    api = hass.data[DATA_MICROSOFT_FACE]
    attributes = config[CONF_ATTRIBUTES]

    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(MicrosoftFaceDetectEntity(
            camera[CONF_ENTITY_ID], api, attributes, camera.get(CONF_NAME)
        ))
開發者ID:JiShangShiDai,項目名稱:home-assistant,代碼行數:31,代碼來源:microsoft_face_detect.py

示例4: import

from homeassistant.components.image_processing import (
    ATTR_CONFIDENCE, CONF_CONFIDENCE, CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE,
    PLATFORM_SCHEMA, ImageProcessingFaceEntity)
from homeassistant.components.microsoft_face import DATA_MICROSOFT_FACE
from homeassistant.const import ATTR_NAME
from homeassistant.core import split_entity_id
from homeassistant.exceptions import HomeAssistantError
import homeassistant.helpers.config_validation as cv

_LOGGER = logging.getLogger(__name__)

CONF_GROUP = 'group'

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_GROUP): cv.slugify,
})


async def async_setup_platform(hass, config, async_add_entities,
                               discovery_info=None):
    """Set up the Microsoft Face identify platform."""
    api = hass.data[DATA_MICROSOFT_FACE]
    face_group = config[CONF_GROUP]
    confidence = config[CONF_CONFIDENCE]

    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(MicrosoftFaceIdentifyEntity(
            camera[CONF_ENTITY_ID], api, face_group, confidence,
            camera.get(CONF_NAME)
開發者ID:home-assistant,項目名稱:home-assistant,代碼行數:30,代碼來源:image_processing.py

示例5: draw_box

    vol.Optional(CONF_LEFT, default=0): cv.small_float,
    vol.Optional(CONF_RIGHT, default=1): cv.small_float,
    vol.Optional(CONF_TOP, default=0): cv.small_float,
})

CATEGORY_SCHEMA = vol.Schema({
    vol.Required(CONF_CATEGORY): cv.string,
    vol.Optional(CONF_AREA): AREA_SCHEMA,
})

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Optional(CONF_FILE_OUT, default=[]):
        vol.All(cv.ensure_list, [cv.template]),
    vol.Required(CONF_MODEL): vol.Schema({
        vol.Required(CONF_GRAPH): cv.isfile,
        vol.Optional(CONF_AREA): AREA_SCHEMA,
        vol.Optional(CONF_CATEGORIES, default=[]):
            vol.All(cv.ensure_list, [vol.Any(cv.string, CATEGORY_SCHEMA)]),
        vol.Optional(CONF_LABELS): cv.isfile,
        vol.Optional(CONF_MODEL_DIR): cv.isdir,
    })
})


def draw_box(draw, box, img_width,
             img_height, text='', color=(255, 255, 0)):
    """Draw bounding box on image."""
    ymin, xmin, ymax, xmax = box
    (left, right, top, bottom) = (xmin * img_width, xmax * img_width,
                                  ymin * img_height, ymax * img_height)
    draw.line([(left, top), (left, bottom), (right, bottom),
               (right, top), (left, top)], width=5, fill=color)
開發者ID:Martwall,項目名稱:home-assistant,代碼行數:32,代碼來源:tensorflow.py

示例6: timedelta

DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
DEFAULT_MIN_SIZE = (30, 30)
DEFAULT_NEIGHBORS = 4
DEFAULT_SCALE = 1.1
DEFAULT_TIMEOUT = 10

SCAN_INTERVAL = timedelta(seconds=2)

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Optional(CONF_CLASSIFIER): {
        cv.string: vol.Any(
            cv.isfile,
            vol.Schema({
                vol.Required(CONF_FILE): cv.isfile,
                vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
                vol.Optional(CONF_NEIGHBORS, DEFAULT_NEIGHBORS):
                    cv.positive_int,
                vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE):
                    vol.Schema((int, int))
            })
        )
    }
})


def _create_processor_from_config(hass, camera_entity, config):
    """Create an OpenCV processor from configuration."""
    classifier_config = config.get(CONF_CLASSIFIER)
    name = '{} {}'.format(
        config[CONF_NAME], split_entity_id(camera_entity)[1].replace('_', ' '))
開發者ID:DavidMStraub,項目名稱:home-assistant,代碼行數:30,代碼來源:opencv.py

示例7: timedelta

    CLASSIFIER_GROUP_CONFIG,
    CONF_CLASSIFIER,
    CONF_ENTITY_ID,
    CONF_NAME,
    process_image,
)

DEPENDENCIES = ['opencv']

_LOGGER = logging.getLogger(__name__)

DEFAULT_TIMEOUT = 10

SCAN_INTERVAL = timedelta(seconds=2)

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(CLASSIFIER_GROUP_CONFIG)


def _create_processor_from_config(hass, camera_entity, config):
    """Create an OpenCV processor from configurtaion."""
    classifier_config = config[CONF_CLASSIFIER]
    name = '{} {}'.format(
        config[CONF_NAME],
        split_entity_id(camera_entity)[1].replace('_', ' '))

    processor = OpenCVImageProcessor(
        hass,
        camera_entity,
        name,
        classifier_config,
    )
開發者ID:compvter,項目名稱:home-assistant,代碼行數:31,代碼來源:opencv.py

示例8: import

from homeassistant.core import split_entity_id
from homeassistant.components.image_processing import (
    ImageProcessingFaceEntity, PLATFORM_SCHEMA, CONF_SOURCE, CONF_ENTITY_ID,
    CONF_NAME)
import homeassistant.helpers.config_validation as cv

REQUIREMENTS = ['face_recognition==1.2.3']

_LOGGER = logging.getLogger(__name__)

ATTR_NAME = 'name'
CONF_FACES = 'faces'

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_FACES): {cv.string: cv.isfile},
})


def setup_platform(hass, config, add_entities, discovery_info=None):
    """Set up the Dlib Face detection platform."""
    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(DlibFaceIdentifyEntity(
            camera[CONF_ENTITY_ID], config[CONF_FACES], camera.get(CONF_NAME)
        ))

    add_entities(entities)


class DlibFaceIdentifyEntity(ImageProcessingFaceEntity):
開發者ID:fbradyirl,項目名稱:home-assistant,代碼行數:30,代碼來源:image_processing.py

示例9: async_setup_platform

CONF_HEIGHT = 'height'
CONF_ROTATE = 'rotate'
CONF_SSOCR_BIN = 'ssocr_bin'
CONF_THRESHOLD = 'threshold'
CONF_WIDTH = 'width'
CONF_X_POS = 'x_position'
CONF_Y_POS = 'y_position'

DEFAULT_BINARY = 'ssocr'

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Optional(CONF_EXTRA_ARGUMENTS, default=''): cv.string,
    vol.Optional(CONF_DIGITS): cv.positive_int,
    vol.Optional(CONF_HEIGHT, default=0): cv.positive_int,
    vol.Optional(CONF_SSOCR_BIN, default=DEFAULT_BINARY): cv.string,
    vol.Optional(CONF_THRESHOLD, default=0): cv.positive_int,
    vol.Optional(CONF_ROTATE, default=0): cv.positive_int,
    vol.Optional(CONF_WIDTH, default=0): cv.positive_int,
    vol.Optional(CONF_X_POS, default=0): cv.string,
    vol.Optional(CONF_Y_POS, default=0): cv.positive_int,
})


async def async_setup_platform(hass, config, async_add_entities,
                               discovery_info=None):
    """Set up the Seven segments OCR platform."""
    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(ImageProcessingSsocr(
            hass, camera[CONF_ENTITY_ID], config, camera.get(CONF_NAME)
        ))
開發者ID:ManHammer,項目名稱:home-assistant,代碼行數:31,代碼來源:seven_segments.py

示例10: async_setup_platform

    'eu',
    'fr',
    'gb',
    'kr',
    'kr2',
    'mx',
    'sg',
    'us',
    'vn2'
]

CONF_REGION = 'region'

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_API_KEY): cv.string,
    vol.Required(CONF_REGION):
        vol.All(vol.Lower, vol.In(OPENALPR_REGIONS)),
})


@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
    """Set up the openalpr cloud api platform."""
    confidence = config[CONF_CONFIDENCE]
    params = {
        'secret_key': config[CONF_API_KEY],
        'tasks': "plate",
        'return_image': 0,
        'country': config[CONF_REGION],
    }
開發者ID:nunofgs,項目名稱:home-assistant,代碼行數:30,代碼來源:openalpr_cloud.py

示例11: import

from homeassistant.core import split_entity_id
import homeassistant.helpers.config_validation as cv
from homeassistant.components.image_processing import (
    PLATFORM_SCHEMA, CONF_SOURCE, CONF_ENTITY_ID,
    CONF_NAME)
from homeassistant.components.image_processing.microsoft_face_identify import (
    ImageProcessingFaceEntity)

_LOGGER = logging.getLogger(__name__)

CONF_ENDPOINT = 'endpoint'
ROUNDING_DECIMALS = 2

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_ENDPOINT): cv.string,
})


def setup_platform(hass, config, add_devices, discovery_info=None):
    """Set up the classifier."""
    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(Facebox(
            camera.get(CONF_NAME),
            config[CONF_ENDPOINT],
            camera[CONF_ENTITY_ID]
        ))
    add_devices(entities)

開發者ID:Symbyos83,項目名稱:homeassistant-config,代碼行數:28,代碼來源:facebox.py

示例12: check_box_health

ATTR_BOUNDING_BOX = 'bounding_box'
ATTR_CLASSIFIER = 'classifier'
ATTR_IMAGE_ID = 'image_id'
ATTR_ID = 'id'
ATTR_MATCHED = 'matched'
FACEBOX_NAME = 'name'
CLASSIFIER = 'facebox'
DATA_FACEBOX = 'facebox_classifiers'
FILE_PATH = 'file_path'
SERVICE_TEACH_FACE = 'facebox_teach_face'


PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_IP_ADDRESS): cv.string,
    vol.Required(CONF_PORT): cv.port,
    vol.Optional(CONF_USERNAME): cv.string,
    vol.Optional(CONF_PASSWORD): cv.string,
})

SERVICE_TEACH_SCHEMA = vol.Schema({
    vol.Optional(ATTR_ENTITY_ID): cv.entity_ids,
    vol.Required(ATTR_NAME): cv.string,
    vol.Required(FILE_PATH): cv.string,
})


def check_box_health(url, username, password):
    """Check the health of the classifier and return its id if healthy."""
    kwargs = {}
    if username:
        kwargs['auth'] = requests.auth.HTTPBasicAuth(username, password)
開發者ID:home-assistant,項目名稱:home-assistant,代碼行數:31,代碼來源:image_processing.py

示例13: async_setup_platform

    'gb',
    'kr',
    'mx',
    'sg',
]

CONF_REGION = 'region'
CONF_ALPR_BIN = 'alp_bin'

DEFAULT_BINARY = 'alpr'
DEFAULT_CONFIDENCE = 80

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Required(CONF_REGION):
        vol.All(vol.Lower, vol.In(OPENALPR_REGIONS)),
    vol.Optional(CONF_ALPR_BIN, default=DEFAULT_BINARY): cv.string,
    vol.Optional(CONF_CONFIDENCE, default=DEFAULT_CONFIDENCE):
        vol.All(vol.Coerce(float), vol.Range(min=0, max=100))
})


@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
    """Set up the openalpr local platform."""
    command = [config[CONF_ALPR_BIN], '-c', config[CONF_REGION], '-']
    confidence = config[CONF_CONFIDENCE]

    entities = []
    for camera in config[CONF_SOURCE]:
        entities.append(OpenAlprLocalEntity(
            camera[CONF_ENTITY_ID], command, confidence, camera.get(CONF_NAME)
開發者ID:thejacko12354,項目名稱:home-assistant,代碼行數:31,代碼來源:openalpr_local.py


注:本文中的homeassistant.components.image_processing.PLATFORM_SCHEMA類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。