本文整理匯總了Python中gpaw.grid_descriptor.GridDescriptor類的典型用法代碼示例。如果您正苦於以下問題:Python GridDescriptor類的具體用法?Python GridDescriptor怎麽用?Python GridDescriptor使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了GridDescriptor類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: go
def go(comm, ngpts, repeat, narrays, out, prec):
N_c = np.array((ngpts, ngpts, ngpts))
a = 10.0
gd = GridDescriptor(N_c, (a, a, a), comm=comm))
gdcoarse = gd.coarsen()
gdfine = gd.refine()
kin1 = Laplace(gd, -0.5, 1).apply
laplace = Laplace(gd, -0.5, 2)
kin2 = laplace.apply
restrict = Transformer(gd, gdcoarse, 1).apply
interpolate = Transformer(gd, gdfine, 1).apply
precondition = Preconditioner(gd, laplace, np_float)
a1 = gd.empty(narrays)
a1[:] = 1.0
a2 = gd.empty(narrays)
c = gdcoarse.empty(narrays)
f = gdfine.empty(narrays)
T = [0, 0, 0, 0, 0]
for i in range(repeat):
comm.barrier()
kin1(a1, a2)
comm.barrier()
t0a = time()
kin1(a1, a2)
t0b = time()
comm.barrier()
t1a = time()
kin2(a1, a2)
t1b = time()
comm.barrier()
t2a = time()
for A, C in zip(a1,c):
restrict(A, C)
t2b = time()
comm.barrier()
t3a = time()
for A, F in zip(a1,f):
interpolate(A, F)
t3b = time()
comm.barrier()
if prec:
t4a = time()
for A in a1:
precondition(A, None, None, None)
t4b = time()
comm.barrier()
T[0] += t0b - t0a
T[1] += t1b - t1a
T[2] += t2b - t2a
T[3] += t3b - t3a
if prec:
T[4] += t4b - t4a
if mpi.rank == 0:
out.write(' %2d %2d %2d' % tuple(gd.parsize_c))
out.write(' %12.6f %12.6f %12.6f %12.6f %12.6f\n' %
tuple([t / repeat / narrays for t in T]))
out.flush()
示例2: __init__
class WignerSeitzTruncatedCoulomb:
def __init__(self, cell_cv, nk_c, txt=sys.stdout):
self.nk_c = nk_c
bigcell_cv = cell_cv * nk_c[:, np.newaxis]
L_c = (np.linalg.inv(bigcell_cv)**2).sum(0)**-0.5
rc = 0.5 * L_c.min()
prnt('Inner radius for %dx%dx%d Wigner-Seitz cell: %.3f Ang' %
(tuple(nk_c) + (rc * Bohr,)), file=txt)
self.a = 5 / rc
prnt('Range-separation parameter: %.3f Ang^-1' % (self.a / Bohr),
file=txt)
# nr_c = [get_efficient_fft_size(2 * int(L * self.a * 1.5))
nr_c = [get_efficient_fft_size(2 * int(L * self.a * 3.0))
for L in L_c]
prnt('FFT size for calculating truncated Coulomb: %dx%dx%d' %
tuple(nr_c), file=txt)
self.gd = GridDescriptor(nr_c, bigcell_cv, comm=mpi.serial_comm)
v_R = self.gd.empty()
v_i = v_R.ravel()
pos_iv = self.gd.get_grid_point_coordinates().reshape((3, -1)).T
corner_jv = np.dot(np.indices((2, 2, 2)).reshape((3, 8)).T, bigcell_cv)
for i, pos_v in enumerate(pos_iv):
r = ((pos_v - corner_jv)**2).sum(axis=1).min()**0.5
if r == 0:
v_i[i] = 2 * self.a / pi**0.5
else:
v_i[i] = erf(self.a * r) / r
self.K_Q = np.fft.fftn(v_R) * self.gd.dv
def get_potential(self, pd):
q_c = pd.kd.bzk_kc[0]
shift_c = (q_c * self.nk_c).round().astype(int)
max_c = self.gd.N_c // 2
K_G = pd.zeros()
N_c = pd.gd.N_c
for G, Q in enumerate(pd.Q_qG[0]):
Q_c = (np.unravel_index(Q, N_c) + N_c // 2) % N_c - N_c // 2
Q_c = Q_c * self.nk_c + shift_c
if (abs(Q_c) < max_c).all():
K_G[G] = self.K_Q[tuple(Q_c)]
G2_G = pd.G2_qG[0]
a = self.a
if pd.kd.gamma:
K_G[0] += pi / a**2
else:
K_G[0] += 4 * pi * (1 - np.exp(-G2_G[0] / (4 * a**2))) / G2_G[0]
K_G[1:] += 4 * pi * (1 - np.exp(-G2_G[1:] / (4 * a**2))) / G2_G[1:]
assert pd.dtype == complex
return K_G
示例3: __init__
def __init__(self, gd, spline_j, spos_c, index=None):
rcut = max([spline.get_cutoff() for spline in spline_j])
corner_c = np.ceil(spos_c * gd.N_c - rcut / gd.h_c).astype(int)
size_c = np.ceil(spos_c * gd.N_c + rcut / gd.h_c).astype(int) - corner_c
smallgd = GridDescriptor(N_c=size_c + 1, cell_cv=gd.h_c * (size_c + 1), pbc_c=False, comm=mpi.serial_comm)
lfc = LFC(smallgd, [spline_j])
lfc.set_positions((spos_c[np.newaxis, :] * gd.N_c - corner_c + 1) / smallgd.N_c)
ni = lfc.Mmax
f_iG = smallgd.zeros(ni)
lfc.add(f_iG, {0: np.eye(ni)})
LocalizedFunctions.__init__(self, gd, f_iG, corner_c, index=index)
示例4: extend_grid
def extend_grid(gd, N_cd):
N_cd = np.array(N_cd)
N_c = gd.N_c + N_cd.sum(axis=1)
cell_cv = gd.h_cv * N_c
move_c = gd.get_grid_spacings() * N_cd[:,0]
egd = GridDescriptor(N_c, cell_cv, gd.pbc_c, gd.comm)
egd.extend_N_cd = N_cd
return egd, cell_cv*Bohr, move_c*Bohr
示例5: interpolate_2d
def interpolate_2d(mat):
from gpaw.grid_descriptor import GridDescriptor
from gpaw.transformers import Transformer
nn = 10
N_c = np.zeros([3], dtype=int)
N_c[1:] = mat.shape[:2]
N_c[0] = nn
bmat = np.resize(mat, N_c)
gd = GridDescriptor(N_c, N_c)
finegd = GridDescriptor(N_c * 2, N_c)
interpolator = Transformer(gd, finegd, 3)
fine_bmat = finegd.zeros()
interpolator.apply(bmat, fine_bmat)
return fine_bmat[0]
示例6: make_dummy_kpt_reference
def make_dummy_kpt_reference(l, function, k_c,
rcut=6., a=10., n=60, dtype=complex):
r = np.linspace(0., rcut, 300)
mcount = 2*l + 1
fcount = 1
kcount = 1
gd = GridDescriptor((n, n, n), (a, a, a), (True, True, True))
kpt = KPoint([], gd, 1., 0, 0, 0, k_c, dtype)
spline = Spline(l, r[-1], function(r))
center = (.5, .5, .5)
lf = create_localized_functions([spline], gd, center, dtype=dtype)
lf.set_phase_factors([kpt.k_c])
psit_nG = gd.zeros(mcount, dtype=dtype)
coef_xi = np.identity(mcount * fcount, dtype=dtype)
lf.add(psit_nG, coef_xi, k=0)
kpt.psit_nG = psit_nG
print 'Number of boxes', len(lf.box_b)
print 'Phase kb factors shape', lf.phase_kb.shape
return gd, kpt, center
示例7: setUp
def setUp(self):
for virtvar in ['boundaries', 'celltype']:
assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar
# Basic unit cell information:
pbc_c = {'zero' : (False,False,False), \
'periodic': (True,True,True), \
'mixed' : (True, False, True)}[self.boundaries]
a, b = self.a, 2**0.5*self.a
cell_cv = {'general' : np.array([[0,a,a],[a/2,0,a/2],[a/2,a/2,0]]),
'rotated' : np.array([[0,0,b],[b/2,0,0],[0,b/2,0]]),
'inverted' : np.array([[0,0,b],[0,b/2,0],[b/2,0,0]]),
'orthogonal': np.diag([b, b/2, b/2])}[self.celltype]
cell_cv = np.array([(4-3*pbc)*c_v for pbc,c_v in zip(pbc_c, cell_cv)])
# Decide how many kpoints to sample from the 1st Brillouin Zone
kpts_c = np.ceil((10/Bohr)/np.sum(cell_cv**2,axis=1)**0.5).astype(int)
kpts_c = tuple(kpts_c*pbc_c + 1-pbc_c)
bzk_kc = kpts2ndarray(kpts_c)
self.gamma = len(bzk_kc) == 1 and not bzk_kc[0].any()
#p = InputParameters()
#Z_a = self.atoms.get_atomic_numbers()
#xcfunc = XC(p.xc)
#setups = Setups(Z_a, p.setups, p.basis, p.lmax, xcfunc)
#symmetry, weight_k, self.ibzk_kc = reduce_kpoints(self.atoms, bzk_kc,
# setups, p.usesymm)
self.ibzk_kc = bzk_kc.copy() # don't use symmetry reduction of kpoints
self.nibzkpts = len(self.ibzk_kc)
self.ibzk_kv = kpoint_convert(cell_cv, skpts_kc=self.ibzk_kc)
# Parse parallelization parameters and create suitable communicators.
#parsize_domain, parsize_bands = create_parsize_minbands(self.nbands, world.size)
parsize_domain, parsize_bands = world.size//gcd(world.size, self.nibzkpts), 1
assert self.nbands % np.prod(parsize_bands) == 0
domain_comm, kpt_comm, band_comm = distribute_cpus(parsize_domain,
parsize_bands, self.nspins, self.nibzkpts)
# Set up band descriptor:
self.bd = BandDescriptor(self.nbands, band_comm)
# Set up grid descriptor:
N_c = np.round(np.sum(cell_cv**2, axis=1)**0.5 / self.h)
N_c += 4-N_c % 4 # makes domain decomposition easier
self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize_domain)
self.assertEqual(self.gamma, np.all(~self.gd.pbc_c))
# What to do about kpoints?
self.kpt_comm = kpt_comm
if debug and world.rank == 0:
comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
self.gd.comm, self.kpt_comm]])
print '%d world, %d band, %d domain, %d kpt' % comm_sizes
示例8: get_combined_data
def get_combined_data(self, qmdata=None, cldata=None, spacing=None):
if qmdata is None:
qmdata = self.density.rhot_g
if cldata is None:
cldata = self.classical_material.charge_density
if spacing is None:
spacing = self.cl.gd.h_cv[0, 0]
spacing_au = spacing / Bohr # from Angstroms to a.u.
# Collect data from different processes
cln = self.cl.gd.collect(cldata)
qmn = self.qm.gd.collect(qmdata)
clgd = GridDescriptor(self.cl.gd.N_c,
self.cl.cell,
False,
serial_comm,
None)
if world.rank == 0:
cln *= self.classical_material.sign
# refine classical part
while clgd.h_cv[0, 0] > spacing_au * 1.50: # 45:
cln = Transformer(clgd, clgd.refine()).apply(cln)
clgd = clgd.refine()
# refine quantum part
qmgd = GridDescriptor(self.qm.gd.N_c,
self.qm.cell,
False,
serial_comm,
None)
while qmgd.h_cv[0, 0] < clgd.h_cv[0, 0] * 0.95:
qmn = Transformer(qmgd, qmgd.coarsen()).apply(qmn)
qmgd = qmgd.coarsen()
assert np.all(qmgd.h_cv == clgd.h_cv), " Spacings %.8f (qm) and %.8f (cl) Angstroms" % (qmgd.h_cv[0][0] * Bohr, clgd.h_cv[0][0] * Bohr)
# now find the corners
r_gv_cl = clgd.get_grid_point_coordinates().transpose((1, 2, 3, 0))
cind = self.qm.corner1 / np.diag(clgd.h_cv) - 1
n = qmn.shape
# print 'Corner points: ', self.qm.corner1*Bohr, ' - ', self.qm.corner2*Bohr
# print 'Calculated points: ', r_gv_cl[tuple(cind)]*Bohr, ' - ', r_gv_cl[tuple(cind+n+1)]*Bohr
cln[cind[0] + 1:cind[0] + n[0] + 1,
cind[1] + 1:cind[1] + n[1] + 1,
cind[2] + 1:cind[2] + n[2] + 1] += qmn
world.barrier()
return cln, clgd
示例9: test
def test():
from gpaw.grid_descriptor import GridDescriptor
ngpts = 40
h = 1.0 / ngpts
N_c = (ngpts, ngpts, ngpts)
a = h * ngpts
gd = GridDescriptor(N_c, (a, a, a))
from gpaw.spline import Spline
a = np.array([1, 0.9, 0.8, 0.0])
s = Spline(0, 0.2, a)
x = LocalizedFunctionsCollection(gd, [[s], [s]])
x.set_positions([(0.5, 0.45, 0.5), (0.5, 0.55, 0.5)])
n_G = gd.zeros()
x.add(n_G)
import pylab as plt
plt.contourf(n_G[20, :, :])
plt.axis('equal')
plt.show()
示例10: make_dummy_reference
def make_dummy_reference(l, function=None, rcut=6., a=12., n=60,
dtype=float):
"""Make a mock reference wave function using a made-up radial function
as reference"""
#print 'Dummy reference: l=%d, rcut=%.02f, alpha=%.02f' % (l, rcut, alpha)
r = np.arange(0., rcut, .01)
if function is None:
function = QuasiGaussian(4., rcut)
norm = get_norm(r, function(r), l)
function.renormalize(norm)
#g = QuasiGaussian(alpha, rcut)
mcount = 2*l + 1
fcount = 1
gd = GridDescriptor((n, n, n), (a, a, a), (False, False, False))
spline = Spline(l, r[-1], function(r), points=50)
center = (.5, .5, .5)
lf = create_localized_functions([spline], gd, center, dtype=dtype)
psit_k = gd.zeros(mcount, dtype=dtype)
coef_xi = np.identity(mcount * fcount, dtype=dtype)
lf.add(psit_k, coef_xi)
return gd, psit_k, center, function
示例11: f
def f(n, p):
N = 2 * n
gd = GridDescriptor((N, N, N), (L, L, L))
a = gd.zeros()
print(a.shape)
#p = PoissonSolver(nn=1, relax=relax)
p.set_grid_descriptor(gd)
p.initialize()
cut = N / 2.0 * 0.9
s = Spline(l=0, rmax=cut, f_g=np.array([1, 0.5, 0.0]))
c = LFC(gd, [[s], [s]])
c.set_positions([(0, 0, 0), (0.5, 0.5, 0.5)])
c.add(a)
I0 = gd.integrate(a)
a -= gd.integrate(a) / L**3
I = gd.integrate(a)
b = gd.zeros()
p.solve(b, a, charge=0)#, eps=1e-20)
return gd.collect(b, broadcast=1)
示例12: Spline
from gpaw.test import equal
from gpaw.grid_descriptor import GridDescriptor
from gpaw.spline import Spline
import gpaw.mpi as mpi
from gpaw.lfc import LocalizedFunctionsCollection as LFC
s = Spline(0, 1.0, [1.0, 0.5, 0.0])
n = 40
a = 8.0
gd = GridDescriptor((n, n, n), (a, a, a), comm=mpi.serial_comm)
c = LFC(gd, [[s], [s], [s]])
c.set_positions([(0.5, 0.5, 0.25 + 0.25 * i) for i in [0, 1, 2]])
b = gd.zeros()
c.add(b)
x = gd.integrate(b)
gd = GridDescriptor((n, n, n), (a, a, a), comm=mpi.serial_comm)
c = LFC(gd, [[s], [s], [s]])
c.set_positions([(0.5, 0.5, 0.25 + 0.25 * i) for i in [0, 1, 2]])
b = gd.zeros()
c.add(b)
y = gd.integrate(b)
equal(x, y, 1e-13)
示例13: divmod
from gpaw.fd_operators import Gradient
import numpy as np
from gpaw.grid_descriptor import GridDescriptor
from gpaw.mpi import world
if world.size > 4:
# Grid is so small that domain decomposition cannot exceed 4 domains
assert world.size % 4 == 0
group, other = divmod(world.rank, 4)
ranks = np.arange(4*group, 4*(group+1))
domain_comm = world.new_communicator(ranks)
else:
domain_comm = world
gd = GridDescriptor((8, 1, 1), (8.0, 1.0, 1.0), comm=domain_comm)
a = gd.zeros()
dadx = gd.zeros()
a[:, 0, 0] = np.arange(gd.beg_c[0], gd.end_c[0])
gradx = Gradient(gd, v=0)
print a.itemsize, a.dtype, a.shape
print dadx.itemsize, dadx.dtype, dadx.shape
gradx.apply(a, dadx)
# a = [ 0. 1. 2. 3. 4. 5. 6. 7.]
#
# da
# -- = [-2.5 1. 1. 1. 1. 1. 1. -2.5]
# dx
dadx = gd.collect(dadx, broadcast=True)
assert dadx[3, 0, 0] == 1.0 and np.sum(dadx[:, 0, 0]) == 0.0
示例14: GridDescriptor
import numpy as np
from gpaw.lfc import LocalizedFunctionsCollection as LFC
from gpaw.grid_descriptor import GridDescriptor
from gpaw.spline import Spline
a = 4.0
gd = GridDescriptor(N_c=[16, 20, 20], cell_cv=[a, a + 1, a + 2],
pbc_c=(0, 1, 1))
spos_ac = np.array([[0.25, 0.15, 0.35], [0.5, 0.5, 0.5]])
kpts_kc = None
s = Spline(l=0, rmax=2.0, f_g=np.array([1, 0.9, 0.1, 0.0]))
p = Spline(l=1, rmax=2.0, f_g=np.array([1, 0.9, 0.1, 0.0]))
spline_aj = [[s], [s, p]]
c = LFC(gd, spline_aj, cut=True, forces=True)
c.set_positions(spos_ac)
C_ani = c.dict(3, zero=True)
if 1 in C_ani:
C_ani[1][:, 1:] = np.eye(3)
psi = gd.zeros(3)
c.add(psi, C_ani)
c.integrate(psi, C_ani)
if 1 in C_ani:
d = C_ani[1][:, 1:].diagonal()
assert d.ptp() < 4e-6
C_ani[1][:, 1:] -= np.diag(d)
assert abs(C_ani[1]).max() < 5e-17
d_aniv = c.dict(3, derivative=True)
c.derivative(psi, d_aniv)
if 1 in d_aniv:
for v in range(3):
assert abs(d_aniv[1][v - 1, 0, v] + 0.2144) < 5e-5
d_aniv[1][v - 1, 0, v] = 0
示例15: GridDescriptor
from time import time
from gpaw.grid_descriptor import GridDescriptor
from gpaw.fd_operators import Laplace
import gpaw.mpi as mpi
n = 96
h = 0.1
L = n * h
gd = GridDescriptor((n, n, n), [L, L, L])
# Allocate arrays:
a = gd.zeros(100) + 1.2
b = gd.empty(100)
o = Laplace(gd, 2).apply
t0 = time()
for r in range(10):
o(a, b)
if mpi.rank == 0:
print time() - t0, a.shape