當前位置: 首頁>>代碼示例>>Python>>正文


Python MotifConfig.get_score_dir方法代碼示例

本文整理匯總了Python中gimmemotifs.config.MotifConfig.get_score_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python MotifConfig.get_score_dir方法的具體用法?Python MotifConfig.get_score_dir怎麽用?Python MotifConfig.get_score_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gimmemotifs.config.MotifConfig的用法示例。


在下文中一共展示了MotifConfig.get_score_dir方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: MotifComparer

# 需要導入模塊: from gimmemotifs.config import MotifConfig [as 別名]
# 或者: from gimmemotifs.config.MotifConfig import get_score_dir [as 別名]
class MotifComparer(object):
    """Class for motif comparison.
    
    Compare two or more motifs using a variety of metrics. Probably the best
    metric to compare motifs is seqcor. The implementation of this metric 
    is similar to the one used in Grau (2015), where motifs are scored 
    according to the Pearson correlation of the scores along sequence. In this
    case a de Bruijn of k=7 is used.

    Valid metrics are:
    seqcor - Pearson correlation of motif scores along sequence.
    pcc - Pearson correlation coefficient of motif PFMs.
    ed - Euclidean distance-based similarity of motif PFMs.
    distance - Distance-based similarity of motif PFMs.
    wic - Weighted Information Content, see van Heeringen 2011.
    chisq - Chi-squared similarity of motif PFMs.
    akl - Similarity based on average Kullback-Leibler similarity, see Mahony, 2011.
    ssd - Sum of squared distances of motif PFMs.
    
    Examples
    --------
    mc = MotifComparer()
    
    # Compare two motifs
    score, pos, strand = mc.compare_motifs(m1, m2, metric="seqcor")

    # Compare a list of motifs to another list of motifs
    mc.get_all_scores(motifs, dbmotifs, match, metric, combine)

    # Get the best match for every motif in a list of reference motifs
    get_closest_match(motifs, dbmotifs=None)
    """  
    def __init__(self):
        self.config = MotifConfig()
        self.metrics = ["pcc", "ed", "distance", "wic"]
        self.combine = ["mean", "sum"]
        self._load_scores()
        # Create a parallel python job server, to use for fast motif comparison
        

    def _load_scores(self):
        self.scoredist = {}
        for metric in self.metrics:
            self.scoredist[metric] = {"total": {}, "subtotal": {}}
            for match in ["total", "subtotal"]:
                for combine in ["mean"]:
                    self.scoredist[metric]["%s_%s" % (match, combine)] = {}
                    score_file = os.path.join(self.config.get_score_dir(), "%s_%s_%s_score_dist.txt" % (match, metric, combine))
                    if os.path.exists(score_file):
                        with open(score_file) as f:
                            for line in f:
                                l1, l2, m, sd = line.strip().split("\t")[:4]
                                self.scoredist[metric]["%s_%s" % (match, combine)].setdefault(int(l1), {})[int(l2)] = [float(m), float(sd)]
    
    def compare_motifs(self, m1, m2, match="total", metric="wic", combine="mean", pval=False):
        """Compare two motifs.
        
        The similarity metric can be any of seqcor, pcc, ed, distance, wic, 
        chisq, akl or ssd. If match is 'total' the similarity score is 
        calculated for the whole match, including positions that are not 
        present in both motifs. If match is partial or subtotal, only the
        matching psotiions are used to calculate the score. The score of
        individual position is combined using either the mean or the sum.

        Note that the match and combine parameters have no effect on the seqcor
        similarity metric.      

        Parameters
        ----------
        m1 : Motif instance
            Motif instance 1.

        m2 : Motif instance
            Motif instance 2.

        match : str, optional
            Match can be "partial", "subtotal" or "total". Not all metrics use 
            this.

        metric : str, optional
            Distance metric.

        combine : str, optional
            Combine positional scores using "mean" or "sum". Not all metrics
            use this.

        pval : bool, optional
            Calculate p-vale of match.
        
        Returns
        -------
        score, position, strand 
        """
        if metric == "seqcor":
            return seqcor(m1, m2)
        elif match == "partial":
            if pval:
                return self.pvalue(m1, m2, "total", metric, combine, self.max_partial(m1.pwm, m2.pwm, metric, combine))
            elif metric in ["pcc", "ed", "distance", "wic", "chisq", "ssd"]:
                return self.max_partial(m1.pwm, m2.pwm, metric, combine)
#.........這裏部分代碼省略.........
開發者ID:simonvh,項目名稱:gimmemotifs,代碼行數:103,代碼來源:comparison.py


注:本文中的gimmemotifs.config.MotifConfig.get_score_dir方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。