本文整理匯總了Python中galpy.orbit.Orbit類的典型用法代碼示例。如果您正苦於以下問題:Python Orbit類的具體用法?Python Orbit怎麽用?Python Orbit使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Orbit類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sample_los
def sample_los(options,args,dfc):
print "Sampling the LOS ..."
n= 0
out= []
while n < options.nobjects:
thisos= dfc.sampleLOS(los=options.los,n=options.nobjects-n)
#add distance uncertainty
thisout= []
for o in thisos:
basico= Orbit([o.R(),o.vR(),o.vT(),0.,0.,o.phi()])#HACK bc ll does not work in 2D currently
thisd= basico.dist(obs=[1.,0.,0.],ro=1.)
#Add uncertainty logarithmically, like photometric distance uncertainty TO DO
thisd+= nu.random.normal()*thisd*options.distuncertainty
thisout.append(Orbit([basico.ll(obs=[1.,0.,0.],ro=1.)[0],
thisd[0],
basico.pmll(obs=[1.,0.,0.,0.,1.,0.],
ro=1.,vo=1.)[0],
basico.vlos(obs=[1.,0.,0.,0.,1.,0.],
ro=1.,vo=1.)[0]],
lb=True,
solarmotion=[0.,0.,0.],ro=1.,vo=1.))
ds= nu.array([o.dist(obs=[1.,0.,0.],ro=1.) for o in thisout]).flatten()
thisos= [thisout[ii] for ii in range(len(thisout)) \
if (ds[ii] < options.dmax)]
out.extend(thisos)
n+= len(thisos)
if len(out) > options.nobjects:
out= out[0:options.nobjects-1]
#Save
picklefile= open(args[0],'wb')
pickle.dump(out,picklefile)
picklefile.close()
return None
示例2: test_correctInitialSolarMotion
def test_correctInitialSolarMotion():
age = np.pi # Half a galactic revolution
# For reference: the expected solar motion as provided by Schoenrich
REFERENCE_SCHOENRICH_SOLAR_MOTION = np.array([-11.1, -12.24, -7.25])
ntimesteps = 10
# vxvv is in cylindrical coordinates here. [R,vR,vT(,z,vz,phi)]
lsr_orbit = Orbit(vxvv=[1,0,1,0,0,0],vo=220,ro=8,solarmotion='schoenrich')
lsr_orbit.integrate(np.linspace(0.,age,ntimesteps), MWPotential2014)
U = lsr_orbit.U(0)
V = lsr_orbit.V(0)
W = lsr_orbit.W(0)
results = np.array([U, V, W]).reshape(3)
for i, vel in enumerate('UVW'):
print("For velocity {}:".format(vel))
print(" expected: {}".format(REFERENCE_SCHOENRICH_SOLAR_MOTION[i]))
print(" received: {}".format(results[i]))
assert (np.allclose(REFERENCE_SCHOENRICH_SOLAR_MOTION, results)),\
'!!! Using galpy version {} Need galpy version 1.1 !!!'.format(
galpy.__version__
)
示例3: observed_to_xyzuvw_orbit
def observed_to_xyzuvw_orbit(obs, ts, lsr_orbit=None):
"""
Convert six-parameter astrometric solution to XYZUVW orbit.
Parameters
----------
obs : [RA (deg), DEC (deg), pi (mas),
mu_ra (mas/yr), mu_dec (mas/yr), vlos (km/s)]
Current kinematics
ts : [ntimes] array
times (in Myr) to traceback to
lsr_orbit : Orbit
the orbit of the local standard of rest for comparison, if None can
calculate on the fly
XYZUVW : [ntimes, 6] array
The space position and velocities of the star in a co-rotating frame
centred on the LSR
"""
#convert times from Myr into bovy_time
bovy_ts = ts / (bovy_conversion.time_in_Gyr(220.,8.)*1000) # bovy-time/Myr
logging.info("max time in Myr: {}".format(np.max(ts)))
logging.info("max time in Bovy time: {}".format(np.max(bovy_ts)))
o = Orbit(vxvv=obs, radec=True, solarmotion='schoenrich')
o.integrate(bovy_ts,mp,method='odeint')
data = o.getOrbit()
XYZUVW = galpy_coords_to_xyzuvw(data, bovy_ts)
return XYZUVW
示例4: traceback2
def traceback2(params,times):
"""Trace forward a cluster. First column of returned array is the
position of the cluster at a given age.
Parameters
----------
times: float array
Times to trace forward, in Myr. Note that positive numbers are going
forward in time.
params: float array
[RA,DE,Plx,PM(RA),PM(DE),RV]
RA = Right Ascension (Deg)
DE = Declination (Deg)
Plx = Paralax (Mas)
PM(RA) = Proper motion (Right Ascension) (mas/yr)
PM(DE) = Proper motion (Declination) (mas/yr)
RV = Radial Velocity (km/s)
age: Age of cluster, in Myr
"""
#FIXME: This is very out of date and should be deleted!!!
#Times in Myr
ts = -(times/1e3)/bovy_conversion.time_in_Gyr(220.,8.)
nts = len(times)
#Positions and velocities in the co-rotating solar reference frame.
xyzuvw = np.zeros( (1,nts,6) )
#Trace forward the local standard of rest.
lsr_orbit= Orbit(vxvv=[1.,0,1,0,0.,0],vo=220,ro=8)
lsr_orbit.integrate(ts,MWPotential2014)#,method='odeint')
xyzuvw = integrate_xyzuvw(params,ts,lsr_orbit,MWPotential2014)
return xyzuvw
示例5: test_estimateDelta
def test_estimateDelta():
#_____initialize some KKSPot_____
Delta = 1.0
pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True)
#_____initialize an orbit (twice)_____
vxvv = [1.,0.1,1.1,0.01,0.1]
o= Orbit(vxvv=vxvv)
#_____integrate the orbit with C_____
ts= numpy.linspace(0,101,100)
o.integrate(ts,pot,method='leapfrog_c')
#____estimate Focal length Delta_____
#for each time step individually:
deltas_estimate = numpy.zeros(len(ts))
for ii in range(len(ts)):
deltas_estimate[ii] = estimateDeltaStaeckel(pot,o.R(ts[ii]),o.z(ts[ii]))
assert numpy.all(numpy.fabs(deltas_estimate - Delta) < 10.**-8), \
'Focal length Delta estimated along the orbit is not constant.'
#for all time steps together:
delta_estimate = estimateDeltaStaeckel(pot,o.R(ts),o.z(ts))
assert numpy.fabs(delta_estimate - Delta) < 10.**-8, \
'Focal length Delta estimated from the orbit is not the same as the input focal length.'
return None
示例6: trace_cartesian_orbit
def trace_cartesian_orbit(xyzuvw_start, times=None, single_age=True,
potential=MWPotential2014, ro=8., vo=220.):
"""
Given a star's XYZUVW relative to the LSR (at any time), project its
orbit forward (or backward) to each of the times listed in *times*
Positive times --> traceforward
Negative times --> traceback
TODO: Primary source of inefficiencies, 1366.2 (s)
Parameters
----------
xyzuvw : [pc,pc,pc,km/s,km/s,km/s]
times : (float) or ([ntimes] float array)
Myr - time of 0.0 must be present in the array. Times need not be
spread linearly.
single_age: (bool) {True}
Set this flag if only providing a single age to trace to
Returns
-------
xyzuvw_tf : [ntimes, 6] array
[pc, pc, pc, km/s, km/s, km/s] - the traced orbit with positions
and velocities
Notes
-----
Profiling comments have been left in for future reference, but note
that the profiling was done with previous versions of coordinate
functions - ones that utilised astropy.units (and thus symbolic algebra)
"""
if single_age:
# replace 0 with some tiny number
if times == 0.:
times = 1e-15
times = np.array([0., times])
else:
times = np.array(times)
xyzuvw_start = np.copy(xyzuvw_start).astype(np.float)
bovy_times = convert_myr2bovytime(times)
# since the LSR is constant in chron coordinates, the starting point
# is always treated as time 0
galpy_coords = convert_cart2galpycoords(xyzuvw_start, ts=0.,
ro=ro, vo=vo)
o = Orbit(vxvv=galpy_coords, ro=ro, vo=vo)
o.integrate(bovy_times, potential, method='odeint')
xyzuvw = convert_galpycoords2cart(o.getOrbit(), bovy_times,
ro=ro, vo=vo)
if single_age:
return xyzuvw[-1]
return xyzuvw
示例7: evolveorbit
def evolveorbit(icon, ti, tau, pot):
global x
global y
o = Orbit(vxvv=icon) # [R,vR,vT,z,vz,phi]
tf = ti+tau
ts = np.linspace(ti,tf,100)
o.integrate(ts, pot, method = 'leapfrog')
x.append(o.x(ts[0]))
y.append(o.y(ts[0]))
return [o.R(tf),o.vR(tf),o.vT(tf),o.z(tf),o.vz(tf),o.phi(tf)]
示例8: test_orbitint
def test_orbitint():
import numpy
from galpy.potential import MWPotential2014
from galpy.potential import evaluatePotentials as evalPot
from galpy.orbit import Orbit
E, Lz= -1.25, 0.6
o1= Orbit([0.8,0.,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(0.8,0.,MWPotential2014)-(Lz/0.8)**2./2.)),0.])
ts= numpy.linspace(0.,100.,2001)
o1.integrate(ts,MWPotential2014)
o1.plot(xrange=[0.3,1.],yrange=[-0.2,0.2],color='k')
o2= Orbit([0.8,0.3,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(0.8,0.,MWPotential2014)-(Lz/0.8)**2./2.-0.3**2./2.)),0.])
o2.integrate(ts,MWPotential2014)
o2.plot(xrange=[0.3,1.],yrange=[-0.2,0.2],color='k')
return None
示例9: get_lsr_orbit
def get_lsr_orbit(times, Potential=MWPotential2014):
"""Integrate the local standard of rest backwards in time, in order to provide
a reference point to our XYZUVW coordinates.
Parameters
----------
times: numpy float array
Times at which we want the orbit of the local standard of rest.
Potential: galpy potential object.
"""
ts = -(times/1e3)/bovy_conversion.time_in_Gyr(220.,8.)
lsr_orbit= Orbit(vxvv=[1.,0,1,0,0.,0],vo=220,ro=8, solarmotion='schoenrich')
lsr_orbit.integrate(ts,Potential)#,method='odeint')
return lsr_orbit
示例10: calc_delta_MWPotential2014
def calc_delta_MWPotential2014(savefilename,plotfilename):
Lmin, Lmax= 0.01, 10.
if not os.path.exists(savefilename):
#Setup grid
nL, nE= 101,101
Ls= 10.**numpy.linspace(numpy.log10(Lmin),numpy.log10(Lmax),nL)
#Integration times
ts= numpy.linspace(0.,20.,1001)
deltas= numpy.empty((nL,nE))
Einf= evalPot(10.**12.,0.,MWPotential2014)
print Einf
for ii in range(nL):
#Calculate Ec
Rc= rl(MWPotential2014,Ls[ii])
print ii, "Rc = ", Rc*8.
Ec= evalPot(Rc,0.,MWPotential2014)+0.5*Ls[ii]**2./Rc**2.
Es= Ec+(Einf-Ec)*10.**numpy.linspace(-2.,0.,nE)
for jj in range(nE):
#Setup an orbit with this energy and angular momentum
Er= 2.*(Es[jj]-Ec) #Random energy times 2 = vR^2 + vz^2
vR= numpy.sqrt(4./5.*Er)
vz= numpy.sqrt(1./5.*Er)
o= Orbit([Rc,vR,Ls[ii]/Rc,0.,vz,0.])
o.integrate(ts,MWPotential2014,method='symplec4_c')
deltas[ii,jj]= estimateDeltaStaeckel(o.R(ts),o.z(ts),
pot=MWPotential2014)
#Save
save_pickles(savefilename,deltas)
else:
savefile= open(savefilename,'rb')
deltas= pickle.load(savefile)
savefile.close()
#Plot
print numpy.nanmax(deltas)
bovy_plot.bovy_print()
bovy_plot.bovy_dens2d(deltas.T,origin='lower',cmap='jet',
xrange=[numpy.log10(Lmin),numpy.log10(Lmax)],
yrange=[-2,0.],
xlabel=r'$\log_{10} L$',
ylabel=r'$\log_{10}\left(\frac{E-E_c(L)}{E(\infty)-E_c(L)}\right)$',
colorbar=True,shrink=0.78,
zlabel=r'$\mathrm{Approximate\ focal\ length}$',
# interpolation='nearest',
vmin=0.,vmax=0.6)
bovy_plot.bovy_end_print(plotfilename)
return None
示例11: test_actionConservation
def test_actionConservation():
#_____initialize some KKSPot_____
Delta = 1.0
pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True)
#_____initialize an orbit (twice)_____
vxvv = [1.,0.1,1.1,0.01,0.1]
o= Orbit(vxvv=vxvv)
#_____integrate the orbit with C_____
ts= numpy.linspace(0,101,100)
o.integrate(ts,pot,method='leapfrog_c')
#_____Setup ActionAngle object and calculate actions (Staeckel approximation)_____
aAS = actionAngleStaeckel(pot=pot,delta=Delta,c=True)
jrs,lzs,jzs = aAS(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts))
assert numpy.all(numpy.fabs(jrs - jrs[0]) < 10.**-8.), \
'Radial action is not conserved along orbit.'
assert numpy.all(numpy.fabs(lzs - lzs[0]) < 10.**-8.), \
'Angular momentum is not conserved along orbit.'
assert numpy.all(numpy.fabs(jzs - jzs[0]) < 10.**-8.), \
'Vertical action is not conserved along orbit.'
return None
示例12: trace_orbit_xyzuvw
def trace_orbit_xyzuvw(xyzuvw_then, times):
"""
Given a star's XYZUVW relative to the LSR (at any time), project its
orbit forward to each of the times listed in *times*
Parameters
----------
xyzuvw : [pc,pc,pc,km/s,km/s,km/s]
times : [ntimes] array
Myr
Returns
-------
xyzuvw_tf : [ntimes, 6] array
the traced-forward positions and velocities
"""
XYZUVW_sun_now = np.array([0.,0.,0.025,11.1,12.24,7.25])
# convert positions to kpc
xyzuvw_then[:3] *= 1e-3
# convert times from Myr to bovy units
bovy_times = times*1e-3 / bovy_conversion.time_in_Gyr(220., 8.)
logging.debug("Tracing up to {} Myr".format(times[-1]))
logging.debug("Tracing up to {} Bovy yrs".format(bovy_times[-1]))
# Galpy coordinates are from the vantage point of the sun.
# So even though the sun wasn't where it is, we still "observe" the star
# from a solar height and motion
XYZUVW_gp_tf = xyzuvw_then - XYZUVW_sun_now
logging.debug("Galpy vector: {}".format(XYZUVW_gp_tf))
l,b,dist = lbdist_from_XYZ(XYZUVW_gp_tf)
vxvv = [l,b,dist,XYZUVW_gp_tf[3],XYZUVW_gp_tf[4],XYZUVW_gp_tf[5]]
logging.debug("vxvv: {}".format(vxvv))
otf = Orbit(vxvv=vxvv, lb=True, uvw=True, solarmotion='schoenrich')
otf.integrate(bovy_times,mp,method='odeint')
data_tf = otf.getOrbit()
XYZUVW_tf = galpy_coords_to_xyzuvw(data_tf, bovy_times)
logging.debug("Started orbit at {}".format(XYZUVW_tf[0]))
logging.debug("Finished orbit at {}".format(XYZUVW_tf[-1]))
return XYZUVW_tf
示例13: get_initial_condition
def get_initial_condition(to):
"""Find an initial condition near apocenter that ends up today near the end of the stream and is close to a gyrfalcon stepsize
to= Find an apocenter that is just more recent than this time"""
vo, ro= 220., 8.
# Center of the stream
o= Orbit([0.10035165,-0.81302488,0.80986668,0.58024425,0.92753945,
0.88763126],ro=ro,vo=vo)
#Flip for backwards integration
of= o.flip()
ts= numpy.linspace(0.,to/bovy_conversion.time_in_Gyr(vo,ro),10001)
of.integrate(ts,MWPotential2014)
# Find the closest apocenter to the time to
rs= numpy.sqrt(of.R(ts)**2.+of.z(ts)**2.)
drs= rs-numpy.roll(rs,1)
nearApo= (drs < 0.)*(numpy.roll(drs,1) > 0.)
tsNearApo= ts[nearApo]
tsNearApo*= bovy_conversion.time_in_Gyr(vo,ro)
tfgf= numpy.amax(tsNearApo)
#Round to nearest 2.**-8.
tfgf= round(tfgf/2.**-8.)*2.**-8
tf= tfgf/bovy_conversion.time_in_Gyr(vo,ro)
print 'Current: %s,%s,%s,%s,%s,%s' % (of.x()[0], of.y()[0], of.z(), -of.vx()[0], -of.vy()[0], -of.vz())
print 'At %g Gyr: %s,%s,%s,%s,%s,%s' % (tf*bovy_conversion.time_in_Gyr(vo,ro),of.x(tf)[0], of.y(tf)[0], of.z(tf), -of.vx(tf,use_physical=False)[0]*bovy_conversion.velocity_in_kpcGyr(vo,ro), -of.vy(tf,use_physical=False)[0]*bovy_conversion.velocity_in_kpcGyr(vo,ro), -of.vz(tf,use_physical=False)*bovy_conversion.velocity_in_kpcGyr(vo,ro))
return None
示例14: integrate_xyzuvw
def integrate_xyzuvw(params,ts,lsr_orbit,MWPotential2014):
"""Convenience function"""
vxvv = params.copy()
vxvv[2]=1.0/params[2]
o = Orbit(vxvv=vxvv, radec=True, solarmotion='schoenrich')
o.integrate(ts,MWPotential2014,method='odeint')
xyzuvw = np.zeros( (len(ts),6) )
xyzuvw[:,0] = 1e3*(o.x(ts)-lsr_orbit.x(ts))
xyzuvw[:,1] = 1e3*(o.y(ts)-lsr_orbit.y(ts))
xyzuvw[:,2] = 1e3*(o.z(ts))
xyzuvw[:,3] = o.U(ts) - lsr_orbit.U(ts)
xyzuvw[:,4] = o.V(ts) - lsr_orbit.V(ts)
xyzuvw[:,5] = o.W(ts)
return xyzuvw
示例15: test_actionAngleTorus_orbit
def test_actionAngleTorus_orbit():
from galpy.actionAngle import actionAngleTorus
from galpy.potential import MWPotential2014
from galpy.orbit import Orbit
# Set up instance
aAT= actionAngleTorus(pot=MWPotential2014,tol=10.**-5.)
jr,jphi,jz= 0.05,1.1,0.025
# First calculate frequencies and the initial RvR
RvRom= aAT.xvFreqs(jr,jphi,jz,
numpy.array([0.]),
numpy.array([1.]),
numpy.array([2.]))
om= RvRom[1:]
# Angles along an orbit
ts= numpy.linspace(0.,100.,1001)
angler= ts*om[0]
anglephi= 1.+ts*om[1]
anglez= 2.+ts*om[2]
# Calculate the orbit using actionAngleTorus
RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T
# Calculate the orbit using orbit integration
orb= Orbit([RvRom[0][:,0],RvRom[0][:,1],RvRom[0][:,2],
RvRom[0][:,3],RvRom[0][:,4],RvRom[0][:,5]])
orb.integrate(ts,MWPotential2014)
# Compare
tol= -3.
assert numpy.all(numpy.fabs(orb.R(ts)-RvR[0]) < 10.**tol), \
'Integrated orbit does not agree with torus orbit in R'
assert numpy.all(numpy.fabs(orb.vR(ts)-RvR[1]) < 10.**tol), \
'Integrated orbit does not agree with torus orbit in vR'
assert numpy.all(numpy.fabs(orb.vT(ts)-RvR[2]) < 10.**tol), \
'Integrated orbit does not agree with torus orbit in vT'
assert numpy.all(numpy.fabs(orb.z(ts)-RvR[3]) < 10.**tol), \
'Integrated orbit does not agree with torus orbit in z'
assert numpy.all(numpy.fabs(orb.vz(ts)-RvR[4]) < 10.**tol), \
'Integrated orbit does not agree with torus orbit in vz'
assert numpy.all(numpy.fabs(orb.phi(ts)-RvR[5]) < 10.**tol), \
'Integrated orbit does not agree with torus orbit in phi'
return None