當前位置: 首頁>>代碼示例>>Python>>正文


Python FormatingDataSets.FormatingDataSets類代碼示例

本文整理匯總了Python中formating.FormatingDataSets.FormatingDataSets的典型用法代碼示例。如果您正苦於以下問題:Python FormatingDataSets類的具體用法?Python FormatingDataSets怎麽用?Python FormatingDataSets使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了FormatingDataSets類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

 def __init__(self, preparedParameters, filePathResults, filePathAnalyseResult, topRank):
     print "Starting Analysing the results", datetime.today()
     
     absFilePath = filePathResults
     absfilePathAnalyseResult = filePathAnalyseResult #FormatingDataSets.get_abs_file_path(filePathAnalyseResult)
     fResult = open(absFilePath, 'r')
     with open(absfilePathAnalyseResult, 'w') as fnodes:
         self.success = 0
         element = 0
         for line in fResult:
             element = element+1
             FormatingDataSets.printProgressofEvents(element, topRank, "Analysing the results: ")
             cols = line.strip().replace('\n','').split('\t')
             if len(list(networkx.common_neighbors(preparedParameters.testGraph, cols[len(cols)-2] ,  cols[len(cols)-1] ))) != 0:
                 self.success = self.success + 1
                 fnodes.write(cols[len(cols)-2]  + '\t' + cols[len(cols)-1] + '\t' +  'SUCCESS \r\n')
             else:
                 fnodes.write(cols[len(cols)-2]  + '\t' + cols[len(cols)-1] + '\t' +  'FAILED \r\n')
             
             
             
             if element == topRank:
                 break 
         
         result =  float(self.success) / float(topRank) *100
         strResult = 'Final Result: \t' + str(result) + '%'
         fnodes.write(strResult)
         fnodes.write('\n#\t'+str(self.success))
         fnodes.close()
     print "Analysing the results finished", datetime.today()
開發者ID:joaomarcosgris,項目名稱:Predicao-de-Links,代碼行數:30,代碼來源:Analyse.py

示例2: analise

def analise(calcDb, topRank,TestGraph, util, method):
    order = sorted( list({ 'node1': r['node1'], 'node2': r['node2'], 'value' : r[method]} for r in calcDb)  , key=lambda value: value['value'], reverse=True)
    BD = None
    if not os.path.exists(FormatingDataSets.get_abs_file_path(util.calculated_file + '.' + method +'.base.pdl')):
        BD = generate_finalResult(order, topRank, TestGraph, FormatingDataSets.get_abs_file_path(util.calculated_file + '.' + method +'.base.pdl'))
    
    else:
        BD = reading_Database(FormatingDataSets.get_abs_file_path(util.calculated_file + '.' + method +'.base.pdl'))
    
    return get_results(BD, method)
開發者ID:cptullio,項目名稱:Predicao-de-Links,代碼行數:10,代碼來源:FullExecutionFCTI.py

示例3: readingOrginalDataset

    def readingOrginalDataset(self):
        print "Starting Reading Original Dataset", datetime.today()
        with open(self.OriginalDataSet) as f:
            self.OrignalContent = f.readlines()
            f.close()

        articleid = 0
        articles = []
        authornames = []
        authorofArticles = []
        authors = []
        article = None
        element = 0
        for line in self.OrignalContent:
            element = element + 1
            FormatingDataSets.printProgressofEvents(
                element, len(self.OrignalContent), "Reading File Content to Generate Graph: "
            )
            line = line.strip()
            if line.startswith("#*"):
                articleid = articleid + 1
                article = Article("p_" + str(articleid))
                article.articlename = line.replace("#*", "").replace("\r\n", "")
            if line.startswith("#t"):
                article.time = line.replace("#t", "").replace("\r\n", "")

            if line.startswith("#@"):
                authorsofArticle = line.replace("#@", "").replace("\r\n", "").split(",")
                for author in authorsofArticle:
                    author = author.strip()
                    if not author in authornames:
                        authornames.append(author)
                    articleauthor = AuthorInArticle(article.articleid, authornames.index(author) + 1)
                    authorofArticles.append(articleauthor)
            if line.startswith("#!"):
                articles.append(article)
        for index in range(len(authornames)):
            author = Author(index + 1, authornames[index])
            authors.append(author)
        self.Graph = networkx.Graph()
        for item_article in articles:
            self.Graph.add_node(
                item_article.articleid,
                {"node_type": "E", "title": item_article.articlename.decode("latin_1"), "time": int(item_article.time)},
            )
        for item_author in authors:
            self.Graph.add_node(
                int(item_author.authorid), {"node_type": "N", "name": item_author.name.decode("latin_1")}
            )
        for item_edge in authorofArticles:
            self.Graph.add_edge(item_edge.articleid, int(item_edge.authorid))

        print "Reading Original Dataset finished", datetime.today()
開發者ID:joaomarcosgris,項目名稱:Predicao-de-Links,代碼行數:53,代碼來源:Formating.py

示例4: calculatingInputToFuzzy

def calculatingInputToFuzzy(graph, nodesnotLinked,  params):
    
    result = []
    #pdb = Base(calculatingFile)
    #pdb.create('node1', 'node2', 'IntensityNode1', 'IntencityNode2' ,'Similarity','AgesNode1', 'AgesNode2')
    #pdb.create_index('node1', 'node2')
                
    element = 0
    qtyofNodesToProcess = len(nodesnotLinked)
    for pair in nodesnotLinked:
        element = element+1
        FormatingDataSets.printProgressofEvents(element, qtyofNodesToProcess, "Calculating features for nodes not liked: ")
        neighbors_node1 = all_neighbors(graph, pair[0])
        neighbors_node2 = all_neighbors(graph, pair[1])
        len_neihbors_node1 = len(neighbors_node1)
        len_neihbors_node2 = len(neighbors_node2)
        CommonNeigbors = neighbors_node1.intersection(neighbors_node2)
        IntensityNode1 = 0;
        IntensityNode2 = 0;
        Similarities = 0;
        Similarity = 0;
        AgesNode1 = 0;
        AgesNode2 = 0;
        
        for cn in CommonNeigbors:
            infoNode1 = list(edge for n1, n2, edge in graph.edges([ pair[0], cn], data=True) if ((n1 ==  pair[0] and n2 == cn) or (n1 == cn and n2 == pair[0])) )
            infoNode2 = list(edge for n1, n2, edge in graph.edges([pair[1], cn], data=True) if ((n1 ==  pair[1] and n2 == cn) or (n1 == cn and n2 == pair[1])) )

            IntensityNode1 = IntensityNode1 + len(infoNode1)
            IntensityNode2 = IntensityNode2 + len(infoNode2)
            
            MaxTimeNode1 =  max(info['time'] for info in infoNode1 if 1==1)
            MaxTimeNode2 =  max(info['time'] for info in infoNode2 if 1==1)

            AgesNode1 = max(AgesNode1,MaxTimeNode1)
            AgesNode2 = max(AgesNode2,MaxTimeNode1)
            
            bagofWordsNode1 =  list(info['keywords'] for info in infoNode1 if 1==1)
            bagofWordsNode2 =  list(info['keywords'] for info in infoNode2 if 1==1)
            
            
            
            Similarities = Similarities + get_jacard_domain(bagofWordsNode1, bagofWordsNode2)
        AgesNode1 = abs(params.t0_ - AgesNode1)    
        AgesNode2 = abs(params.t0_ - AgesNode2)
        if len(CommonNeigbors) > 0:
            Similarity = (Similarities / len(CommonNeigbors)) *100
            result.append({ 'no1':  str(pair[0]), 'no2' :str(pair[1]), 'intensityno1' : IntensityNode1,'intensityno2' : IntensityNode2, 'similarity' : Similarity, 'ageno1' :  AgesNode1, 'ageno2' :AgesNode2 })
    return result   
開發者ID:andreluizmelo,項目名稱:Predicao-de-Links,代碼行數:49,代碼來源:FullExecutionGraphNowell.py

示例5: readingOrginalDataset

 def readingOrginalDataset(self):
     print "Starting Reading Original Dataset", datetime.today()
     con = None
     try:
         con = psycopg2.connect(database='projetomestrado', user='postgres', password='123456')
         
         curPublicacao = con.cursor()
         curPublicacao.execute("select distinct p.idpublicacao, p.titulo, p.ano from projetomestrado.publicacao p inner join projetomestrado.autorpublicacao a on a.idpublicacao = p.idpublicacao where a.idautor in (select idautor from projetomestrado.autor where afiliacao = 'Instituto Militar de Engenharia')")
         curPublicacaoData = curPublicacao.fetchall()
         element = 0
         qty = len(curPublicacaoData)
         print qty
         for linha in curPublicacaoData:
             element = element+1
             FormatingDataSets.printProgressofEvents(element, qty, "Adding paper to new graph: ")
         
             idpublicacao = linha[0]
             curPublicacaoPalavras = con.cursor()
             curPublicacaoPalavras.execute("select k.keyword from projetomestrado.keyword k inner join projetomestrado.publicacaokeyword pk on pk.idkeyword = k.idkeyword where pk.idpublicacao =" + str(idpublicacao))
             palavras = []
             for palavra in curPublicacaoPalavras.fetchall():
                 palavras.append(palavra[0].strip())
             curAutores = con.cursor()
             curAutores.execute("select a.idautor, a.primeironome, a.ultimonome from projetomestrado.autorpublicacao ap inner join projetomestrado.autor a on a.idautor = ap.idautor where ap.idpublicacao = "+ str(idpublicacao))
             autores = []
             for autor in curAutores.fetchall():
                 autores.append([autor[0], autor[1] + "," + autor[2]])
         
                 
             self.Publications.append([idpublicacao, linha[1], linha[2], palavras, autores ])
         
         self.Graph = networkx.Graph()
         
         for item_article in self.Publications:
             self.Graph.add_node('P_' + str(item_article[0]), {'node_type' : 'E', 'title' : item_article[1].decode("latin_1"), 'time' : int(item_article[2]), 'keywords': str(item_article[3]) })
             for item_autor in item_article[4]:
                 self.Graph.add_node(int(item_autor[0]), {'node_type' : 'N', 'name' : item_autor[1].decode("latin_1") })
                 self.Graph.add_edge('P_' + str(item_article[0]), int(item_autor[0]) )
         
         print "Reading Original Dataset finished", datetime.today()
         
         
 
         
         
         
         
     except psycopg2.DatabaseError, e:
         print 'Error %s' % e
開發者ID:AndersonChaves,項目名稱:Predicao-de-Links,代碼行數:49,代碼來源:DuarteFormattingOnlyIME.py

示例6: execution

def execution(configFile):
    #DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
    resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'T.EXPERIMENTO_ATUAL_CORE03.txt'), 'w')
    
    resultFile.write("Inicio da operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    resultFile.write("\n")

    
    #READING THE CONFIG FILE
    util = ParameterUtil(parameter_file = configFile)
    #CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
    myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
                                filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)

    #GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
    myparams.generating_Training_Graph()
      
    #GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
    myparams.generating_Test_Graph()
    nodesSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
    #GET THE AUTHORS THAT PUBLISH AT TRAINNING AND TEST 
    #A NUMBER OF PAPERS DEFINED AT MIN_EDGES IN CONFIG FILE
    nodes = nodesSelection.get_NowellAuthorsCore()
    #GET A PAIR OF AUTHORS THAT PUBLISH AT LEAST ONE ARTICLE AT TRAINNING AND TEST.
    #DID NOT SEE ANY NEED
    collaborations = nodesSelection.get_NowellColaboration()
    #GET THE FIRST EDGES MADE BY THE COMBINATION OF NODES IN TRAINNING GRAPH
    eOld = nodesSelection.get_NowellE(nodes,myparams.trainnigGraph)
    #GET THE FIRST EDGES MADE BY THE COMBINATION OF NODES IN TEST GRAPH THAT DO NOT HAVE EDGES IN TRAINNING
    eNew = nodesSelection.get_NowellE2(nodes, eOld, myparams.testGraph)
    #GET THE NODES NOT LINKED OVER THE COMBINATION NODES.
    nodesNotLinked = nodesSelection.get_PairsofNodesNotinEold(nodes)
    #CREATING CALCULATION OBJECT
    calc = CalculateInMemory(myparams,nodesNotLinked)
    #CALCULATING THE SCORES.
    resultsofCalculation = calc.executingCalculate()
    #ORDERNING THE RESULTS RETURNING THE TOP N 
    orderingResults = calc.ordering(len(eNew), resultsofCalculation)
    #SAVING THE ORDERED RESULTS.
    calc.saving_orderedResult(util.ordered_file, orderingResults)
    #ANALISE THE ORDERED RESULTS AND CHECK THE FUTURE.
    ScoresResults = Analyse.AnalyseNodesWithScoresInFuture(orderingResults, myparams.testGraph)
    #SAVING THE RESULTS.  
    for index in range(len(ScoresResults)):
        Analyse.saving_analyseResult(ScoresResults[index], util.analysed_file + str(myparams.ScoresChoiced[index][0] ) + '.txt')
        resultFile.write("TOTAL OF SUCESSS USING METRIC "  + str(myparams.ScoresChoiced[index][0])  + " = " +  str(Analyse.get_TotalSucess(ScoresResults[index]) ))
        resultFile.write("\n")
        resultFile.write("\n")
         
    resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
    resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(collaborations)*2)+ "\t\t" + str(len(nodes)) + "\t" + str(len(eOld))+"\t" + str(len(eNew)))
     
    resultFile.write("\n")

    resultFile.write("Fim da Operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    
    resultFile.close()
開發者ID:AndersonChaves,項目名稱:Predicao-de-Links,代碼行數:59,代碼來源:ExecutionNowellFull.py

示例7: step05

def step05(paramFile):
    #util = ParameterUtil(parameter_file = 'data/formatado/arxiv/nowell_example_1994_1999.txt')
    util = ParameterUtil(parameter_file = paramFile)

    myparams = Parameterization(util.keyword_decay, util.lengthVertex, util.t0, util.t0_, util.t1, util.t1_, util.FeaturesChoiced, util.graph_file, util.trainnig_graph_file, util.test_graph_file, util.decay)
    calc = Calculate(myparams, util.nodes_notlinked_file, util.calculated_file, util.ordered_file, util.maxmincalculated_file)
    myparams.generating_Test_Graph()
    analise = Analyse(myparams, FormatingDataSets.get_abs_file_path(util.calculated_file), FormatingDataSets.get_abs_file_path(util.analysed_file) + '.random.analised.txt', calc.qtyDataCalculated)
開發者ID:AndersonChaves,項目名稱:Predicao-de-Links,代碼行數:8,代碼來源:Step05.py

示例8: execution

def execution(configFile):
    
    #DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
    resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
    
    resultFile.write("Inicio da operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    resultFile.write("\n")

    
    #READING THE CONFIG FILE
    util = ParameterUtil(parameter_file = configFile)
    #CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
    myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
                                filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)

    #GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
    myparams.generating_Training_Graph()
      
    #GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
    myparams.generating_Test_Graph()
    
    nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
    #if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.fuzzyinputy.txt')):
    data = calculatingInputToFuzzy(myparams.trainnigGraph,nodeSelection.nodesNotLinked,  myparams)
    saving_files_calculting_input(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.inputFuzzy.txt'), data)
    
    for item in data:
        calc = FuzzyCalculation(item['intensityno1'], item['intensityno2'], item['similarity'], item['ageno1'], item['ageno2'])
        print item['no1'], item['no2'], calc.potencial_ligacao, calc.grau_potencial_ligacao
        
        
       
    
    resultFile.write("\n")
#        
    resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
    resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
     
 
    resultFile.write("\n")

    resultFile.write("Fim da Operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    
    resultFile.close()
開發者ID:andreluizmelo,項目名稱:Predicao-de-Links,代碼行數:46,代碼來源:FullExecutionGraphNowell.py

示例9: execution

def execution(configFile, metricas):
    #DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
    resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
    
    resultFile.write("Inicio da operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    resultFile.write("\n")
    
    #READING THE CONFIG FILE
    util = ParameterUtil(parameter_file = configFile)
    #CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
    myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
                                filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)

    #GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
    myparams.generating_Training_Graph()
      
    #GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
    myparams.generating_Test_Graph()
    
    nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
    
    #CREATING CALCULATION OBJECT
    weights = {'cn' : 1, 'aas': 1, 'pa':1, 'jc': 1, 'ts08':1,'ts05': 1, 'ts02':1}
    
    calc = CalculatingCombinationOnlyNowell(myparams, nodeSelection.nodesNotLinked,weights,False )

    saving_files_calculting(FormatingDataSets.get_abs_file_path(util.calculated_file), calc.results, metricas)
    
    Analise = nodeSelection.AnalyseAllNodesNotLinkedInFuture(nodeSelection.nodesNotLinked, myparams.testGraph)
    salvar_analise(FormatingDataSets.get_abs_file_path(util.analysed_file) + '.allNodes.csv', Analise)
    
    resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
    resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
     
 
    resultFile.write("\n")

    resultFile.write("Fim da Operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    
    resultFile.close()
開發者ID:AndersonChaves,項目名稱:Predicao-de-Links,代碼行數:42,代碼來源:prepareToAG.py

示例10: execution

def execution(configFile):
    
    #DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
    resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
    
    resultFile.write("Inicio da operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    resultFile.write("\n")

    
    #READING THE CONFIG FILE
    util = ParameterUtil(parameter_file = configFile)
    #CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
    myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
                                filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)

    #GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
    myparams.generating_Training_Graph()
      
    #GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
    myparams.generating_Test_Graph()
    
    nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
    #if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.fuzzyinputy.txt')):
    data = calculatingInputToFuzzy(myparams.trainnigGraph,nodeSelection.nodesNotLinked,  myparams)
    dataSorted = sorted(data, key=lambda value: value['result'], reverse=True)
    
    topRank = len(nodeSelection.eNeW)
    totalCalculated = len(dataSorted)
    dataToAnalysed = []
    if (topRank >= totalCalculated):
        for item in range(totalCalculated):
            dataToAnalysed.append({'no1':  dataSorted[item]['no1'], 'no2': dataSorted[item]['no2'], 'result':  dataSorted[item]['result'] })
    else:
        for item in range(topRank):
            dataToAnalysed.append({'no1':  dataSorted[item]['no1'], 'no2': dataSorted[item]['no2'], 'result':  dataSorted[item]['result'] })
            
    
    analise = AnalyseNodesInFuture(dataToAnalysed, myparams.testGraph)
    
    resultFile.write( repr(get_TotalSucess(analise)) )   
    
    resultFile.write("\n")
#        
    resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
    resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
     
 
    resultFile.write("\n")

    resultFile.write("Fim da Operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    
    resultFile.close()
開發者ID:cptullio,項目名稱:Predicao-de-Links,代碼行數:54,代碼來源:FullExecutionGraphNowell_NoCN.py

示例11: calculatingWeights

def calculatingWeights(graph, nodesnotLinked, database, calculatingFile):
    pdb = Base(calculatingFile)
    pdb.create('node1', 'node2', 'cnWTS02','cnWTS05','cnWTS08', 'aaWTS02', 'aaWTS05', 'aaWTS08')
    pdb.create_index('node1', 'node2')
                
    element = 0
    qtyofNodesToProcess = len(nodesnotLinked)
    for pair in nodesnotLinked:
        element = element+1
        FormatingDataSets.printProgressofEvents(element, qtyofNodesToProcess, "Calculating features for nodes not liked: ")
        neighbors_node1 = all_neighbors(graph, pair[0])
        neighbors_node2 = all_neighbors(graph, pair[1])
        len_neihbors_node1 = len(neighbors_node1)
        len_neihbors_node2 = len(neighbors_node2)
        CommonNeigbors = neighbors_node1.intersection(neighbors_node2)
        CNWts02Feature = 0;
        CNWts05Feature = 0;
        CNWts08Feature = 0;
        AAWts02Feature = 0;
        AAWts05Feature = 0;
        AAWts08Feature = 0;
        CNWJCFeature = 0;
        AAWJCFeature = 0;
        
        for cn in CommonNeigbors:
            item = get_partOfWeightCalculating(graph, database, pair, cn)
            CNWts02Feature = CNWts02Feature + item['cnWts02'];
            CNWts05Feature = CNWts05Feature + item['cnWts05'];
            CNWts08Feature = CNWts08Feature + item['cnWts08'];
            AAWts02Feature = AAWts02Feature + item['aaWts02'];
            AAWts05Feature = AAWts05Feature + item['aaWts05'];
            AAWts08Feature = AAWts08Feature + item['aaWts08'];
            #CNWJCFeature = CNWJCFeature + item['cnWJC'];
            #AAWJCFeature = AAWJCFeature + item['aaWJC'];
        
            
        pdb.insert(str(pair[0]), str(pair[1]), CNWts02Feature, CNWts05Feature, CNWts08Feature, AAWts02Feature, AAWts05Feature, AAWts08Feature  )   
    pdb.commit()
    return pdb;
開發者ID:cptullio,項目名稱:Predicao-de-Links,代碼行數:39,代碼來源:FullExecutionGraphRich_versaoTempo.py

示例12: get_pair_nodes_not_linked

 def get_pair_nodes_not_linked(self):
     print "Starting getting pair of nodes that is not liked", datetime.today()
     results = []
     nodesinGraph =self.graph.nodes()
     nodesOrdered = sorted(nodesinGraph)
     totalnodesOrdered = len(nodesOrdered)
     element = 0
     
     for node in nodesOrdered:
         element = element+1
         FormatingDataSets.printProgressofEvents(element, totalnodesOrdered, "Checking Node not liked: ")
         publicacoes = self.graph.edges(node,data=False)
         qtdepublicacoes = len(publicacoes)
         #print "O autor e seus papers ",node,qtdepublicacoes ,publicacoes 
         if (qtdepublicacoes >= self.min_papers):
             others =  set(n for n in nodesOrdered if n > node)
             for otherNode in others:
                 other_publicacoes = self.graph.edges(otherNode,data=False)
                 other_qtdepublicacoes = len(other_publicacoes)
                 if (other_qtdepublicacoes >= self.min_papers):
                     if (not self.graph.has_edge(node, otherNode)):
                         if self.USE_MAX_NUMBER_OF_PEOPLE_BETWEEN == True:
                             if networkx.has_path(self.graph, node, otherNode):
                                 shortestPathResult = networkx.shortest_path(self.graph, node, otherNode)
                                 #print shortestPathResult
                                 tamanho_caminho = len(shortestPathResult) - 1
                                 #print "%s ate %s: %s" %(node1, other_node,tamanho_caminho)
                                 #print repr(networkx.shortest_path(graph, node1, other_node));
                                 if ( tamanho_caminho > 0 ) and (tamanho_caminho <= self.MAX_NUMBER_OF_PEOPLE_BETWEEN ): # -2 porque inclui o inicio e fim
                                     #print "adicionando %s - %s" %(node, otherNode)
                                     results.append([node, otherNode])
                         else:
                             results.append([node, otherNode])
             
     print "getting pair of nodes that is not liked finished", datetime.today()
     return results
開發者ID:AndersonChaves,項目名稱:Predicao-de-Links,代碼行數:36,代碼來源:VariableSelection.py

示例13: get_pair_nodes_not_linked

 def get_pair_nodes_not_linked(self, graph, file, min_papers):
     print "Starting getting pair of nodes that is not liked", datetime.today()
     results = []
     nodesinGraph =set(n for n,d in graph.nodes(data=True) if d['node_type'] == 'N')
     currentNodes = set()
     for n in nodesinGraph:
         
         papers = set(networkx.all_neighbors(graph, n))
         print papers
         if (len(papers) >= min_papers):
             currentNodes.add(n)
     
     print 'qty of authors: ', len(currentNodes)
     nodesOrdered = sorted(currentNodes)
     element = 0
     totalnodesOrdered = len(nodesOrdered)
     for node1 in nodesOrdered:
         element = element+1
         FormatingDataSets.printProgressofEvents(element, totalnodesOrdered, "Checking Node not liked: ")
         
         others =  set(n for n in nodesOrdered if n > node1)
         notLinked = set()
         for other_node in others:
             if len(set(networkx.common_neighbors(graph, node1, other_node))) == 0:
                 notLinked.add(other_node)
         results.append([node1, notLinked])
         if element % 2000 == 0:
             for item in results:
                 file.write(str(item[0]) + '\t' +  repr(item[1]) + '\n')
             results = []
             
     for item in results:
         file.write(str(item[0]) + '\t' +  repr(item[1]) + '\n')
     results = []
         
     print "getting pair of nodes that is not liked finished", datetime.today()
開發者ID:joaomarcosgris,項目名稱:Predicao-de-Links,代碼行數:36,代碼來源:VariableSelection.py

示例14: execution

def execution(configFile):
   
    
    #DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
    resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'wTScore03_010304.txt'), 'w')
    
    resultFile.write("Inicio da operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    resultFile.write("\n")

    
    #READING THE CONFIG FILE
    util = ParameterUtil(parameter_file = configFile)
    #CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
    myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
                                filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)

    #GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
    myparams.generating_Training_Graph()
      
    #GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
    myparams.generating_Test_Graph()
    
    nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
    db = None
    if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl')):
        db = generateWeights(myparams.trainnigGraph, FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl') , myparams)
    else:
        db = reading_Database(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl'))
    calcDb = None
    if not os.path.exists(FormatingDataSets.get_abs_file_path(util.calculated_file + '.base.pdl')):
        calcDb = calculatingWeights(myparams.trainnigGraph, nodeSelection.nodesNotLinked, db, FormatingDataSets.get_abs_file_path(util.calculated_file) + '.base.pdl')
    else:
        calcDb = reading_Database(FormatingDataSets.get_abs_file_path(util.calculated_file + '.base.pdl'))
        
    ordering = get_ordering(calcDb, len(nodeSelection.eNeW))
    
    result = get_analyseNodesInFuture(ordering, myparams.testGraph)
    
    resultFile.write(repr(result))
    
    resultFile.write("\n")
#        
    resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
    resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
     
 
    resultFile.write("\n")

    resultFile.write("Fim da Operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    
    resultFile.close()
開發者ID:cptullio,項目名稱:Predicao-de-Links,代碼行數:53,代碼來源:FullExecutionGraphRich_versaoTempo.py

示例15: execution

def execution(configFile):
    #DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
    resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03_execucaoFinal_cstT02.txt'), 'w')
    
    resultFile.write("Inicio da operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    resultFile.write("\n")
    
    #READING THE CONFIG FILE
    util = ParameterUtil(parameter_file = configFile)
    #CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
    myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
                                filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)

    #GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
    myparams.generating_Training_Graph()
      
    #GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
    myparams.generating_Test_Graph()
    
    nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
    #CREATING CALCULATION OBJECT
    calc = CalculatingTogether(myparams, nodeSelection.nodesNotLinked)
    
    ordering = calc.ordering(len(nodeSelection.eNeW))
    
    #calc.saving_orderedResult(util.ordered_file, ordering)
    
    calc.AnalyseNodesInFuture(ordering, myparams.testGraph)
    
    resultFile.write(repr(calc.get_TotalSucess()))
    
    resultFile.write("\n")
#        
    resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
    resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
     
 
    resultFile.write("\n")

    resultFile.write("Fim da Operacao\n")
    resultFile.write(str(datetime.datetime.now()))
    
    resultFile.close()
開發者ID:cptullio,項目名稱:Predicao-de-Links,代碼行數:44,代碼來源:FullExecutionGraphArxiv.py


注:本文中的formating.FormatingDataSets.FormatingDataSets類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。