本文整理匯總了Python中forcebalance.forcefield.FF.print_map方法的典型用法代碼示例。如果您正苦於以下問題:Python FF.print_map方法的具體用法?Python FF.print_map怎麽用?Python FF.print_map使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類forcebalance.forcefield.FF
的用法示例。
在下文中一共展示了FF.print_map方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from forcebalance.forcefield import FF [as 別名]
# 或者: from forcebalance.forcefield.FF import print_map [as 別名]
#.........這裏部分代碼省略.........
Potentials = prop_return['Potentials']
#============================================#
# Compute the potential energy derivatives. #
#============================================#
if AGrad:
logger.info("Calculating potential energy derivatives with finite difference step size: %f\n" % h)
# Switch for whether to compute the derivatives two different ways for consistency.
FDCheck = False
printcool("Condensed phase energy and dipole derivatives\nInitializing array to length %i" % len(Potentials), color=4, bold=True)
click()
G, GDx, GDy, GDz = energy_derivatives(Liquid, FF, mvals, h, pgrad, len(Potentials), AGrad, dipole=False)
logger.info("Condensed phase energy derivatives took %.3f seconds\n" % click())
#==============================================#
# Condensed phase properties and derivatives. #
#==============================================#
# Physical constants
kB = 0.008314472471220214
T = temperature
kT = kB * T # Unit: kJ/mol
#--- Surface Tension ----
logger.info("Start Computing surface tension.\n")
perturb_proportion = 0.0005
box_vectors = np.array(Liquid.xyz_omms[0][1]/nanometer) # obtain original box vectors from first frame
delta_S = np.sqrt(np.sum(np.cross(box_vectors[0], box_vectors[1])**2)) * perturb_proportion * 2 # unit: nm^2. *2 for 2 surfaces
# perturb xy area +
click()
scale_x = scale_y = np.sqrt(1 + perturb_proportion)
scale_z = 1.0 / (1+perturb_proportion) # keep the box volumn while changing the area of xy plane
Liquid.scale_box(scale_x, scale_y, scale_z)
logger.info("scale_box+ took %.3f seconds\n" %click())
# Obtain energies and gradients
Potentials_plus = Liquid.energy()
logger.info("Calculation of energies for perturbed box+ took %.3f seconds\n" %click())
if AGrad:
G_plus, _, _, _ = energy_derivatives(Liquid, FF, mvals, h, pgrad, len(Potentials), AGrad, dipole=False)
logger.info("Calculation of energy gradients for perturbed box+ took %.3f seconds\n" %click())
# perturb xy area - ( Note: also need to cancel the previous scaling)
scale_x = scale_y = np.sqrt(1 - perturb_proportion) * (1.0/scale_x)
scale_z = 1.0 / (1-perturb_proportion) * (1.0/scale_z)
Liquid.scale_box(scale_x, scale_y, scale_z)
logger.info("scale_box- took %.3f seconds\n" %click())
# Obtain energies and gradients
Potentials_minus = Liquid.energy()
logger.info("Calculation of energies for perturbed box- took %.3f seconds\n" %click())
if AGrad:
G_minus, _, _, _ = energy_derivatives(Liquid, FF, mvals, h, pgrad, len(Potentials), AGrad, dipole=False)
logger.info("Calculation of energy gradients for perturbed box- took %.3f seconds\n" %click())
# Compute surface tension
dE_plus = Potentials_plus - Potentials # Unit: kJ/mol
dE_minus = Potentials_minus - Potentials # Unit: kJ/mol
prefactor = -0.5 * kT / delta_S / 6.0221409e-1 # Unit mJ m^-2
# Following equation: γ = -kT/(2ΔS) * [ ln<exp(-ΔE+/kT)> - ln<exp(-ΔE-/kT)> ]
#plus_avg, plus_err = mean_stderr(np.exp(-dE_plus/kT))
#minus_avg, minus_err = mean_stderr(np.exp(-dE_minus/kT))
#surf_ten = -0.5 * kT / delta_S * ( np.log(plus_avg) - np.log(minus_avg) ) / 6.0221409e-1 # convert to mJ m^-2
#surf_ten_err = 0.5 * kT / delta_S * ( np.log(plus_avg+plus_err) - np.log(plus_avg-plus_err) + np.log(minus_avg+minus_err) - np.log(minus_avg-minus_err) ) / 6.0221409e-1
exp_dE_plus = np.exp(-dE_plus/kT)
exp_dE_minus = np.exp(-dE_minus/kT)
surf_ten = prefactor * ( np.log(np.mean(exp_dE_plus)) - np.log(np.mean(exp_dE_minus)) )
# Use bootstrap method to estimate the error
num_frames = len(exp_dE_plus)
numboots = 1000
surf_ten_boots = np.zeros(numboots)
for i in xrange(numboots):
boots_ordering = np.random.randint(num_frames, size=num_frames)
boots_exp_dE_plus = np.take(exp_dE_plus, boots_ordering)
boots_exp_dE_minus = np.take(exp_dE_minus, boots_ordering)
surf_ten_boots[i] = prefactor * ( np.log(np.mean(boots_exp_dE_plus)) - np.log(np.mean(boots_exp_dE_minus)) )
surf_ten_err = np.std(surf_ten_boots) * np.sqrt(np.mean([statisticalInefficiency(exp_dE_plus), statisticalInefficiency(exp_dE_minus)]))
printcool("Surface Tension: % .4f +- %.4f mJ m^-2" % (surf_ten, surf_ten_err))
# Analytic Gradient of surface tension
# Formula: β = 1/kT
# ∂γ/∂α = -kT/(2ΔS) * { 1/<exp(-βΔE+)> * [<-β ∂E+/∂α exp(-βΔE+)> - <-β ∂E/∂α><exp(-βΔE+)>]
# -1/<exp(-βΔE-)> * [<-β ∂E-/∂α exp(-βΔE-)> - <-β ∂E/∂α><exp(-βΔE-)>] }
n_params = len(mvals)
G_surf_ten = np.zeros(n_params)
if AGrad:
beta = 1.0 / kT
plus_denom = np.mean(np.exp(-beta*dE_plus))
minus_denom = np.mean(np.exp(-beta*dE_minus))
for param_i in xrange(n_params):
plus_left = np.mean(-beta * G_plus[param_i] * np.exp(-beta*dE_plus))
plus_right = np.mean(-beta * G[param_i]) * plus_denom
minus_left = np.mean(-beta * G_minus[param_i] * np.exp(-beta*dE_minus))
minus_right = np.mean(-beta * G[param_i]) * minus_denom
G_surf_ten[param_i] = prefactor * (1.0/plus_denom*(plus_left-plus_right) - 1.0/minus_denom*(minus_left-minus_right))
printcool("Analytic Derivatives:")
FF.print_map(vals=G_surf_ten)
logger.info("Writing final force field.\n")
pvals = FF.make(mvals)
logger.info("Writing all results to disk.\n")
result_dict = {'surf_ten': surf_ten, 'surf_ten_err': surf_ten_err, 'G_surf_ten': G_surf_ten}
lp_dump(result_dict, 'nvt_result.p')
示例2: main
# 需要導入模塊: from forcebalance.forcefield import FF [as 別名]
# 或者: from forcebalance.forcefield.FF import print_map [as 別名]
#.........這裏部分代碼省略.........
PrintEDA(mEDA, 1)
#============================================#
# Compute the potential energy derivatives. #
#============================================#
logger.info("Calculating potential energy derivatives with finite difference step size: %f\n" % h)
# Switch for whether to compute the derivatives two different ways for consistency.
FDCheck = False
# Create a double-precision simulation object if desired (seems unnecessary).
DoublePrecisionDerivatives = False
if engname == "openmm" and DoublePrecisionDerivatives and AGrad:
logger.info("Creating Double Precision Simulation for parameter derivatives\n")
Liquid = Engine(name="liquid", openmm_precision="double", **EngOpts["liquid"])
Gas = Engine(name="gas", openmm_precision="double", **EngOpts["gas"])
# Compute the energy and dipole derivatives.
printcool("Condensed phase energy and dipole derivatives\nInitializing array to length %i" % len(Energies), color=4, bold=True)
G, GDx, GDy, GDz = energy_derivatives(Liquid, FF, mvals, h, pgrad, len(Energies), AGrad, dipole=True)
printcool("Gas phase energy derivatives", color=4, bold=True)
mG, _, __, ___ = energy_derivatives(Gas, FF, mvals, h, pgrad, len(mEnergies), AGrad, dipole=False)
#==============================================#
# Condensed phase properties and derivatives. #
#==============================================#
#----
# Density
#----
# Build the first density derivative.
GRho = mBeta * (flat(np.mat(G) * col(Rhos)) / L - np.mean(Rhos) * np.mean(G, axis=1))
# Print out the density and its derivative.
Sep = printcool("Density: % .4f +- % .4f kg/m^3\nAnalytic Derivative:" % (Rho_avg, Rho_err))
FF.print_map(vals=GRho)
logger.info(Sep)
def calc_rho(b = None, **kwargs):
if b == None: b = np.ones(L,dtype=float)
if 'r_' in kwargs:
r_ = kwargs['r_']
return bzavg(r_,b)
# No need to calculate error using bootstrap, but here it is anyway
# Rhoboot = []
# for i in range(numboots):
# boot = np.random.randint(N,size=N)
# Rhoboot.append(calc_rho(None,**{'r_':Rhos[boot]}))
# Rhoboot = np.array(Rhoboot)
# Rho_err = np.std(Rhoboot)
if FDCheck:
Sep = printcool("Numerical Derivative:")
GRho1 = property_derivatives(Liquid, FF, mvals, h, pgrad, kT, calc_rho, {'r_':Rhos})
FF.print_map(vals=GRho1)
Sep = printcool("Difference (Absolute, Fractional):")
absfrac = ["% .4e % .4e" % (i-j, (i-j)/j) for i,j in zip(GRho, GRho1)]
FF.print_map(vals=absfrac)
#----
# Enthalpy of vaporization
#----
H = Energies + pV
V = np.array(Volumes)
# Print out the liquid enthalpy.
logger.info("Liquid enthalpy: % .4f kJ/mol, stdev % .4f ; (% .4f from energy, % .4f from pV)\n" %
示例3: main
# 需要導入模塊: from forcebalance.forcefield import FF [as 別名]
# 或者: from forcebalance.forcefield.FF import print_map [as 別名]
#.........這裏部分代碼省略.........
numboots = 1000
def bootstats(func,inputs):
# Calculate error using bootstats method
dboot = []
for i in range(numboots):
newins = {k : v[np.random.randint(len(v),size=len(v))] for k,v in inputs.items()}
dboot.append(np.mean(func(**newins)))
return func(**inputs),np.std(np.array(dboot))
def calc_arr(b = None, **kwargs):
# This tomfoolery is required because of Python syntax;
# default arguments must come after nondefault arguments
# and kwargs must come at the end. This function is used
# in bootstrap error calcs and also in derivative calcs.
if 'arr' in kwargs:
arr = kwargs['arr']
if b == None: b = np.ones(len(arr),dtype=float)
return bzavg(arr,b)
# The density in kg/m^3.
# Note: Not really necessary to use bootstrap here, but good to
# demonstrate the principle.
Rho_avg, Rho_err = bootstats(calc_arr,{'arr':Rhos})
Rho_err *= np.sqrt(statisticalInefficiency(Rhos))
print "The finite difference step size is:",h
# The first density derivative
GRho = mBeta * (flat(np.mat(G) * col(Rhos)) / N - np.mean(Rhos) * np.mean(G, axis=1))
FDCheck = False
Sep = printcool("Density: % .4f +- % .4f kg/m^3, Analytic Derivative" % (Rho_avg, Rho_err))
FF.print_map(vals=GRho)
print Sep
if FDCheck:
Sep = printcool("Numerical Derivative:")
GRho1 = property_derivatives(mvals, h, FF, args.liquid_xyzfile, args.liquid_keyfile, kT, calc_arr, {'arr':Rhos})
FF.print_map(vals=GRho1)
Sep = printcool("Difference (Absolute, Fractional):")
absfrac = ["% .4e % .4e" % (i-j, (i-j)/j) for i,j in zip(GRho, GRho1)]
FF.print_map(vals=absfrac)
# The enthalpy of vaporization in kJ/mol.
Ene_avg, Ene_err = bootstats(calc_arr,{'arr':Energies})
mEne_avg, mEne_err = bootstats(calc_arr,{'arr':mEnergies})
pV_avg, pV_err = bootstats(calc_arr,{'arr':pV})
Ene_err *= np.sqrt(statisticalInefficiency(Energies))
mEne_err *= np.sqrt(statisticalInefficiency(mEnergies))
pV_err *= np.sqrt(statisticalInefficiency(pV))
Hvap_avg = mEne_avg - Ene_avg / NMol + kT - np.mean(pV) / NMol
Hvap_err = np.sqrt(Ene_err**2 / NMol**2 + mEne_err**2 + pV_err**2/NMol**2)
# Build the first Hvap derivative.
GHvap = np.mean(G,axis=1)
GHvap += mBeta * (flat(np.mat(G) * col(Energies)) / N - Ene_avg * np.mean(G, axis=1))
GHvap /= NMol
GHvap -= np.mean(mG,axis=1)
GHvap -= mBeta * (flat(np.mat(mG) * col(mEnergies)) / N - mEne_avg * np.mean(mG, axis=1))
GHvap *= -1
GHvap -= mBeta * (flat(np.mat(G) * col(pV)) / N - np.mean(pV) * np.mean(G, axis=1)) / NMol
print "Box total energy:", np.mean(Energies)
print "Monomer total energy:", np.mean(mEnergies)