本文整理匯總了Python中fitter.Fitter.addParamsToLegend方法的典型用法代碼示例。如果您正苦於以下問題:Python Fitter.addParamsToLegend方法的具體用法?Python Fitter.addParamsToLegend怎麽用?Python Fitter.addParamsToLegend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fitter.Fitter
的用法示例。
在下文中一共展示了Fitter.addParamsToLegend方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compareSpectrum
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def compareSpectrum(prefix, spectrum, litvals):
xlist = list(zip(*spectrum))[0]
sxlist = list(zip(*spectrum))[1]
compData = DataErrors.fromLists(xlist, litvals, sxlist, [0] * len(litvals))
c = TCanvas('c_%s_compspectrum' % prefix, '', 1280, 720)
g = compData.makeGraph('g_%s_compspectrum' % prefix,
'experimentell bestimmte HFS-Aufspaltung #Delta#nu^{exp}_{%s} / GHz' % prefix,
'theoretische HFS-Aufspaltung #Delta#nu^{theo} / GHz')
g.Draw('AP')
fit = Fitter('fit_%s_compspectum' % prefix, 'pol1(0)')
fit.setParam(0, 'a_{%s}' % prefix, 0)
fit.setParam(1, 'b_{%s}' % prefix, 1)
fit.fit(g, compData.getMinX() - 0.5, compData.getMaxX() + 0.5)
if prefix == "up":
l = TLegend(0.15, 0.6, 0.45, 0.85)
else:
l = TLegend(0.15, 0.6, 0.5, 0.85)
l.SetTextSize(0.03)
l.AddEntry(g, 'Spektrum', 'p')
l.AddEntry(fit.function, 'Fit mit #Delta#nu^{theo} = a_{%s} + b_{%s} #Delta#nu^{exp}_{%s}' % (prefix, prefix, prefix), 'l')
fit.addParamsToLegend(l, [('%.2f', '%.2f'), ('%.3f', '%.3f')], chisquareformat='%.2f', units=['GHz', ''])
l.Draw()
c.Update()
if not DEBUG:
c.Print('../img/part2/%s-spectrum.pdf' % prefix, 'pdf')
示例2: main
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def main():
x, y, sy = zip(*loadCSVToList('../calc/part3/Co-Si_mergedbins.txt'))
data = DataErrors.fromLists(x, y, [0]*len(x), sy)
c = TCanvas('c', '', 1280, 720)
g = data.makeGraph('g', 'Kanal k', 'Counts N')
g.SetMarkerStyle(8)
g.SetMarkerSize(0.5)
g.SetLineColor(15)
g.SetLineWidth(0)
g.Draw('AP')
fit = Fitter('f', '1/(sqrt(2*pi*[2]^2))*gaus(0)')
fit.setParam(0, 'A', 50)
fit.setParam(1, 'x_{c}', 690)
fit.setParam(2, 's', 20)
fit.fit(g, 672, 712)
fit.saveData('../calc/part3/fit_Co-Si_01_mergedbins.txt', 'w')
with TxtFile('../calc/part3/fit_Co-Si_01_mergedbins_raw.txt', 'w') as f:
for key, param in fit.params.iteritems():
f.writeline('\t', *map(str, [param['value'], param['error']]))
l = TLegend(0.7, 0.5, 0.95, 0.85)
l.SetTextSize(0.0225)
l.AddEntry(g, 'Gemittelte Messwerte', 'p')
l.AddEntry(fit.function, 'Fit mit', 'l')
l.AddEntry(0, 'N(k) = #frac{A}{#sqrt{2#pi*#sigma^{2}}} exp(- #frac{1}{2} (#frac{x-x_{c}}{#sigma})^{2})', '')
l.AddEntry(0, '', '')
fit.addParamsToLegend(l, chisquareformat='%.2f')
l.Draw()
c.Update()
c.Print('../img/part3/Co-Si_01_mergedbins.pdf', 'pdf')
示例3: fitT
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitT(x0):
# get data and make graph
data = TData.fromPath('../data/x0_%dmm.txt' % x0)
c = TCanvas('c_%d' % x0, '', 1280, 720)
g = data.makeGraph('g_%d' % x0, 'Kreisfrequenz #omega / (rad/ms)', 'Differenzenfrequenz #Delta#nu / kHz')
g.Draw('AP')
# fit
fit = Fitter('fit_%d' % x0, 'pol1(0)')
fit.setParam(0, 'a')
fit.setParam(1, 'b')
fit.fit(g, min(data.getX()) - 3, max(data.getX()) + 3)
fit.saveData('../calc/fit_x0_%dmm.txt' % x0, 'w')
# legend
l = TLegend(0.15, 0.625, 0.425, 0.85)
l.SetTextSize(0.03)
l.AddEntry(g, 'Messreihe bei x_{0}\' = %d mm' % x0, 'p')
l.AddEntry(fit.function, 'Fit mit #Delta#nu (#omega) = a + b*#omega', 'l')
fit.addParamsToLegend(l, [('%.1f', '%.1f'), ('%.0f', '%.0f')], chisquareformat='%.2f')
l.Draw()
# print
c.Update()
c.Print('../img/fit_x0_%dmm.pdf' % x0, 'pdf')
return [(fit.params[0]['value'], fit.params[0]['error']), (fit.params[1]['value'], fit.params[1]['error'])]
示例4: fitSigma
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitSigma(sigs, times):
listx, listsx = zip(*times)
listy, listsy = zip(*sigs)
listy = map(abs, listy) # fits can yield negative sigma, because it only occurse to
data = DataErrors.fromLists(listx, listy, listsx, listsy)
c = TCanvas('cSigma', '', 1280, 720)
g = data.makeGraph('Sigma', 'Zeit t / s', 'Standardabweichung #sigma / cm')
g.Draw('AP')
fit = Fitter('fitS', 'sqrt(2*[0]*(x + [1]))')
fit.setParam(0, 'D_{n}', 100)
fit.setParam(1, 't_{0}', 0)
fit.fit(g, 1e-6, 21e-6)
fit.saveData('../calc/part2/dist_fit_sigma.txt')
l = TLegend(0.15, 0.625, 0.45, 0.85)
l.SetTextSize(0.03)
l.AddEntry('Sigma', 'Messung', 'p')
l.AddEntry(fit.function, 'Fit mit #sigma(t) = #sqrt{2*D_{n}*(t + t_{0})}', 'l')
fit.addParamsToLegend(l, [('%.1f', '%.1f'), ('%.2e', '%.2e')], chisquareformat='%.2f')
l.Draw()
if PRINTGRAPHS or True:
c.Update()
c.Print('../img/part2/dist_fitSigma.pdf', 'pdf')
示例5: makeBFit
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def makeBFit(darkTimes, Bs):
dt, sdt = list(zip(*darkTimes))
b, sb = list(zip(*Bs))
data = DataErrors.fromLists(dt, b, sdt, sb)
c = TCanvas('c_B', '', 1280, 720)
g = data.makeGraph('g_B', 'Dunkelzeit t_{D} / ms', 'Fitparameter B / V')
g.Draw('APX')
fit = Fitter('fit_B', '[0] + [1] * (1 - exp(-x/[2]))')
fit.function.SetNpx(1000)
fit.setParam(0, 'a', 0.1)
fit.setParam(1, 'b', 0.1)
fit.setParam(2, 'T_{R_{F}}', 6)
fit.fit(g, 0, 25)
fit.saveData('../fit/B.txt')
l = TLegend(0.55, 0.15, 0.85, 0.6)
l.SetTextSize(0.03)
l.AddEntry(g, 'Fitparameter B', 'p')
l.AddEntry(fit.function, 'Fit mit B(t_{D}) = a + b (1 - e^{-x/T_{R_{F}}})', 'l')
fit.addParamsToLegend(l, (('%.3f', '%.3f'), ('%.3f', '%.3f'), ('%.1f', '%.1f')), chisquareformat='%.2f', units=['V', 'V', 'ms'])
l.Draw()
g.Draw('P')
c.Print('../img/part6/BFit.pdf', 'pdf')
示例6: fitX0
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitX0(period):
# get data and make graph
data = X0Data.fromPath('../data/T_%dms.txt' % period)
c = TCanvas('c_%d' % period, '', 1280, 720)
g = data.makeGraph('g_%d' % period, 'Differenzenfrequenz #Delta#nu / kHz', 'Auftreffpunkt x_{0}\' / mm')
g.Draw('AP')
# axis cross
vline = TLine(0, 33, 0, 60)
vline.Draw()
# fit
fit = Fitter('fit_%d' % period, 'pol1(0)')
fit.setParam(0, 'x_{m}', 47)
fit.setParam(1, 'm')
fit.fit(g, min(data.getX()) - 3, max(data.getX()) + 3)
fit.saveData('../calc/fit_T_%dms.txt' % period, 'w')
# legend
l = TLegend(0.15, 0.65, 0.425, 0.85)
l.SetTextSize(0.03)
l.AddEntry(g, 'Messreihe bei T = %d ms' % period, 'p')
l.AddEntry(fit.function, 'Fit mit x_{0}\'(#Delta#nu) = x_{m} + m * #Delta#nu', 'l')
fit.addParamsToLegend(l, [('%.3f', '%.3f'), ('%.4f', '%.4f')], chisquareformat='%.2f')
l.Draw()
# print
c.Update()
c.Print('../img/fit_T_%dms.pdf' % period, 'pdf')
return [(fit.params[0]['value'], fit.params[0]['error']), (fit.params[1]['value'], fit.params[1]['error'])]
示例7: energyGauge
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def energyGauge():
dataList = readFileToList('../calc/hg_lines.txt')
elemNames = ['Hg'] * len(dataList)
dataList += readFileToList('../calc/na_lines.txt')
elemNames += ['Na'] * (len(dataList) - len(elemNames))
litVals = readFileToList('../data/hg_litvals.txt')
litVals += readFileToList('../data/na_litvals.txt')
data = DataErrors()
for val, litval in zip(dataList, litVals):
data.addPoint(val, litval, I2Data.ERRORBIN, 0)
c = TCanvas('c', '', 1280, 720)
g = data.makeGraph('g', 'measured wavelength #lambda_{exp} / nm', 'literature value #lambda_{lit} / nm')
g.Draw('AP')
fit = Fitter('f', '[0]+[1]*x')
fit.setParam(0, 'a', 0)
fit.setParam(1, 'b', 1)
fit.fit(g, 420, 600)
fit.saveData('../calc/fit_energy_gauge.txt', 'w')
l = TLegend(0.15, 0.6, 0.5, 0.85)
l.AddEntry(fit.function, 'y = a + b*x', 'l')
fit.addParamsToLegend(l)
l.SetTextSize(0.03)
l.Draw()
c.Update()
c.Print('../img/energy_gauge.pdf', 'pdf')
示例8: main
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def main():
z, sz = 840, 40
d = [210, 106, 75]
sd = [10, 4, 4]
calc = list(map(lambda x:-20 * log10(x/z), d))
scalc = list(map(lambda x:20 * sqrt((x[1]/x[0]) ** 2 + (sz/z)**2) / log(10), zip(*[d, sd])))
data = DataErrors.fromLists(calc, [12, 18, 21], scalc, [0]*3)
c = TCanvas('c', '', 1280, 720)
g = data.makeGraph('g', 'measured attenuation m / dB', 'nominal value n / dB')
g.Draw('AP')
fit = Fitter('fit', 'pol1(0)')
fit.setParam(0, 'a', 0)
fit.setParam(1, 'b', 1)
fit.fit(g, 11, 22)
fit.saveData('../fit/attenuator.txt')
l = TLegend(0.15, 0.6, 0.5, 0.85)
l.SetTextSize(0.03)
l.AddEntry(g, 'measured att. vs. nominal value', 'p')
l.AddEntry(fit.function, 'fit with n = a + b m', 'l')
fit.addParamsToLegend(l, (('%.2f', '%.2f'), ('%.2f', '%.2f')), chisquareformat='%.4f', units=['dB', ''], lang='en')
l.Draw()
c.Update()
c.Print('../img/attenuator.pdf', 'pdf')
示例9: fitTransmissionSignal
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitTransmissionSignal(name):
data = OPData.fromPath(DIR + name + '.tab', 2)
c = TCanvas('c', '', 1280, 720)
g = data.makeGraph('g_%s' % name, 'Zeit t / s', 'Spannung der Photodiode U_{ph} / V')
prepareGraph(g, 2)
g.GetXaxis().SetRangeUser(0.004, 0.019)
g.Draw('APX')
xmin, xmax = 0.0054, 0.015
fit = Fitter('fit_%s' % name[-2:], '[0] - [1] * exp(-x/[2])')
fit.setParam(0, 'a', 0.01)
fit.setParam(1, 'b', 100)
fit.setParam(2, '#tau', 0.001)
fit.fit(g, xmin, xmax, 'M')
fit.saveData('../fit/part5/%s.txt' % name)
g.Draw('P')
l = TLegend(0.35, 0.2, 0.65, 0.525)
l.SetTextSize(0.03)
l.AddEntry(g, 'Spannung der Photodiode', 'p')
l.AddEntry(fit.function, 'Fit mit U_{ph}(t) = a - b e^{-t/#tau}', 'l')
fit.addParamsToLegend(l, [('%.6f', '%.6f'), ('%.2f', '%.2f'), ('%.6f', '%.6f')], chisquareformat='%.2f', units=['V', 'V', 's'])
l.Draw()
c.Update()
c.Print('../img/part5/%s.pdf' % name.replace('.', '-'), 'pdf')
return fit.params[2]['value'], fit.params[2]['error']
示例10: makeSigmaFit
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def makeSigmaFit(darkTimes, sigmas):
dt, sdt = list(zip(*darkTimes))
s, ss = list(zip(*sigmas))
data = DataErrors.fromLists(dt, s, sdt, ss)
c = TCanvas('c_sigma', '', 1280, 720)
g = data.makeGraph('g_sigma', 'Dunkelzeit t_{D} / ms', 'Verschmierung #sigma / #mus')
g.Draw('APX')
fit = Fitter('fit_sigma', 'pol1(0)')
fit.setParam(0, 'a', 0)
fit.setParam(1, 'b', 1)
fit.fit(g, 0, 25)
fit.saveData('../fit/sigma.txt')
l = TLegend(0.6, 0.15, 0.85, 0.5)
l.SetTextSize(0.03)
l.AddEntry(g, 'Verschmierung #sigma', 'p')
l.AddEntry(None, 'der Fermi-Verteilung', '')
l.AddEntry(fit.function, 'Fit mit #sigma(t_{D}) = a + b t_{D}', 'l')
fit.addParamsToLegend(l, (('%.2f', '%.2f'), ('%.2f', '%.2f')), chisquareformat='%.2f', units=['#mus', '10^{-3}'])
l.Draw()
g.Draw('P')
c.Print('../img/part6/sigmaFit.pdf', 'pdf')
示例11: fitLambda
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitLambda():
data = Data()
data.addPoint(500, 1.000279)
data.addPoint(540, 1.000278)
data.addPoint(600, 1.000277)
data.addPoint(682, 1.000276)
c = TCanvas('c1', '', 1280, 720)
g = data.makeGraph('g', 'wavelength #lambda / nm', 'refraction index n')
g.GetYaxis().SetLabelSize(0.03)
g.GetYaxis().SetTitleOffset(1.39)
g.Draw('AP')
fit = Fitter('f', '[0]+[1]*x')
fit.setParam(0, 'a', 2)
fit.setParam(1, 'b', -1)
fit.fit(g, 450, 700)
fit.saveData('../calc/fit_lambda.txt', 'w')
a = fit.params[0]['value']
sa = fit.params[0]['error']
b = fit.params[1]['value']
sb = fit.params[1]['error']
l = TLegend(0.4, 0.6, 0.87, 0.87)
l.AddEntry('g', 'refraction index n as a function of wavelength #lambda', 'p')
l.AddEntry(fit.function, 'fit with n(#lambda)= a+b*#lambda', 'l')
fit.addParamsToLegend(l)
l.SetTextSize(0.03)
l.Draw()
c.Update()
c.Print('../img/fit_lambda.pdf', 'pdf')
示例12: fitA
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitA(amps, times):
listx, listsx = zip(*times)
listy, listsy = zip(*amps)
slaser_rel = 0.05
listsy = list(listsy)
for i, y in enumerate(listy):
listsy[i] = y * np.sqrt(listsy[i] ** 2 + slaser_rel ** 2)
data = DataErrors.fromLists(listx, listy, listsx, listsy)
c = TCanvas('cA', '', 1280, 720)
g = data.makeGraph('A', 'Zeit t / s', 'Amplitude A / V')
g.GetYaxis().SetTitleOffset(1.2)
g.Draw('AP')
fit = Fitter('A', '[0]*exp(-(x)/[1])+[2]')
fit.function.SetNpx(1000)
fit.setParam(0, 'C', 5e-8)
fit.setParam(1, '#tau_{n}', 45e-6)
fit.setParam(2, 'a', 0)
fit.fit(g, 7.5e-6, 18e-6)
fit.saveData('../calc/part2/volt_fit_A.txt')
l = TLegend(0.625, 0.625, 0.85, 0.85)
l.SetTextSize(0.03)
l.AddEntry('A', 'Messung', 'p')
l.AddEntry(fit.function, 'Fit mit A(t) = C*e^{- #frac{t}{#tau_{n}}} + a', 'l')
fit.addParamsToLegend(l, [('%.2e', '%.1e'), ('%.2e', '%.1e'), ('%.2e', '%.1e')], chisquareformat='%.2f')
l.Draw()
if PRINTGRAPHS or True:
c.Update()
c.Print('../img/part2/volt_fitA.pdf', 'pdf')
c.SetLogy()
c.Update()
c.Print('../img/part2/volt_fitA_log.pdf', 'pdf')
示例13: evalPedestal
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def evalPedestal():
name = 'pedestal'
data = MyonData.fromPath('../data/%s.TKA' % name)
data.convertToCountrate()
c = TCanvas('c_ped', '', 1280, 720)
g = data.makeGraph('g_ped', 'channel c', 'countrate n / (1/s)')
g.SetLineColor(1)
g.SetLineWidth(1)
g.GetXaxis().SetRangeUser(0, 20)
g.Draw('APX')
fit = Fitter('fit_%s' % name, 'gaus(0)')
fit.setParam(0, 'A', 30)
fit.setParam(1, 'x', 6)
fit.setParam(2, '#sigma', 3)
fit.setParamLimits(2, 0, 100)
fit.fit(g, 3.5, 10.5)
fit.saveData('../fit/%s.txt' % name)
l = TLegend(0.55, 0.6, 0.85, 0.85)
l.SetTextSize(0.03)
l.AddEntry(g, 'pedestal', 'p')
l.AddEntry(fit.function, 'fit with n(c) = A gaus(c; x, #sigma)', 'l')
fit.addParamsToLegend(l, (('%.2f', '%.2f'), ('%.3f', '%.3f'), ('%.3f', '%.3f')), chisquareformat='%.2f', units=('1/s', '', ''), lang='en')
l.Draw()
g.Draw('P')
c.Update()
c.Print('../img/%s.pdf' % name, 'pdf')
return (fit.params[1]['value'], fit.params[1]['error'])
示例14: fitSpectrum
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def fitSpectrum(detector, element, params, logy=True):
data = P3SemiCon.fromPath('../data/part3/%s-%s.mca' % (element, detector))
printTotalSpectrum(data, element, detector, logy)
fitresults = []
for i, peak in enumerate(params):
c = TCanvas('cpeakl_%s-%s_%d' % (element, detector, i), '', 1280, 720)
g = data.makeGraph('g%s-%s_%d' % (element, detector, i), 'Kanal k', 'Counts N')
prepareGraph(g)
g.GetXaxis().SetRangeUser(peak[2][0], peak[2][1])
g.SetMinimum(peak[3][0])
g.SetMaximum(peak[3][1])
g.Draw('AP')
fit = None
paramnames = []
if len(peak[0]) == 5:
fit = Fitter('fit%d' % i, 'pol1(0) + 1/(sqrt(2*pi*[4]^2))*gaus(2)')
paramnames = ['a', 'b', 'A', 'k_{c}', 's']
elif len(peak[0]) == 4:
fit = Fitter('fit%d' % i, '[0] + 1/(sqrt(2*pi*[3]^2))*gaus(1)')
paramnames = ['a', 'A', 'k_{c}', 's']
elif len(peak[0]) == 3:
fit = Fitter('fit%d' % i, '1/(sqrt(2*pi*[2]^2))*gaus(0)')
paramnames = ['A', 'k_{c}', 's']
l = None
if len(peak[0]) > 0:
for j, param in enumerate(peak[0]):
fit.setParam(j, paramnames[j], param)
fit.fit(g, *peak[1])
fitname = ''
if len(peak[0]) == 5:
fitname = 'N(k) = a + b*k + #frac{A}{#sqrt{2#pi*#sigma^{2}}} exp(- #frac{1}{2} (#frac{k-k_{c}}{#sigma})^{2})'
elif len(peak[0]) == 4:
fitname = 'N(k) = a + #frac{A}{#sqrt{2#pi*#sigma^{2}}} exp(- #frac{1}{2} (#frac{k-k_{c}}{#sigma})^{2})'
elif len(peak[0]) == 3:
fitname = 'N(k) = #frac{A}{#sqrt{2#pi*#sigma^{2}}} exp(- #frac{1}{2} (#frac{k-k_{c}}{#sigma})^{2})'
fit.saveData('../calc/part3/fit_%s-%s_%02d.txt' % (element, detector, i), 'w')
results = []
for j, param in fit.params.iteritems():
results.append((param['value'], param['error']))
fitresults.append(results)
# legend
l = TLegend(0.675, 0.5, 0.995, 0.85)
l.SetTextSize(0.025)
l.AddEntry(g, 'Messwerte', 'p')
l.AddEntry(fit.function, 'Fit mit', 'l')
l.AddEntry(0, fitname, '')
l.AddEntry(0, '', '')
fit.addParamsToLegend(l, chisquareformat='%.2f')
l.Draw()
c.Update()
if PRINTGRAPHS:
c.Print('../img/part3/%s-%s_%02d.pdf' % (element, detector, i), 'pdf')
return fitresults
示例15: main
# 需要導入模塊: from fitter import Fitter [as 別名]
# 或者: from fitter.Fitter import addParamsToLegend [as 別名]
def main():
snu = ERRORS["nu"] # TODO get error
sB = ERRORS["B"]
sgyrorel = 0
files = ["H", "Glycol", "Teflon"]
for file in files:
datalist = loadCSVToList("../data/03-%s.txt" % file)
if len(datalist) == 1:
B, nu = datalist[0]
gyro, sgyro = calcGyro(nu, snu, B, sB)
if not sgyrorel == 0:
sgyro = gyro * sgyrorel
with TxtFile("../calc/%s.txt" % file, "w") as f:
f.writeline("\t", "gyro", *map(str, (gyro, sgyro)))
f.writeline("\t", "mu", *map(str, calcMu(gyro, sgyro)))
f.writeline("\t", "gI", *map(str, calcNucGFactor(gyro, sgyro)))
else:
x, y = zip(*datalist)
sx = [0] * len(x)
sy = [snu] * len(y)
data = DataErrors.fromLists(x, y, sx, sy)
data.setXErrorAbs(sB)
c = TCanvas("c%s" % file, "", 1280, 720)
g = data.makeGraph("g%s" % file, "Magnetfeld B / mT", "Resonanzfrequenz #nu / MHz")
g.Draw("AP")
fit = Fitter("fit%s" % file, "[0]*x")
fit.setParam(0, "m", 0.002)
fit.fit(g, datalist[0][0] * 0.95, datalist[-1][0] * 1.05)
fit.saveData("../calc/fit-%s.txt" % file, "w")
l = TLegend(0.15, 0.60, 0.475, 0.85)
l.SetTextSize(0.03)
l.AddEntry(g, "Messdaten", "p")
l.AddEntry(fit.function, "Fit mit #nu(B) = m*B", "l")
l.AddEntry(0, "", "")
fit.addParamsToLegend(
l,
[("%.5f", "%.5f"), ("%.2f", "%.2f")],
chisquareformat="%.2f",
advancedchi=True,
units=["MHz / mT", "MHz"],
)
l.Draw()
gyro = 2 * np.pi * fit.params[0]["value"] * 1e9 # in Hz / T
sgyro = 2 * np.pi * fit.params[0]["error"] * 1e9 # in Hz / T
sgyrorel = sgyro / gyro
with TxtFile("../calc/%s.txt" % file, "w") as f:
f.writeline("\t", "gyro", *map(str, (gyro, sgyro)))
f.writeline("\t", "sgyrorel", str(sgyrorel))
f.writeline("\t", "mu", *map(str, calcMu(gyro, sgyro)))
f.writeline("\t", "gI", *map(str, calcNucGFactor(gyro, sgyro)))
c.Update()
c.Print("../img/03-%s.pdf" % file, "pdf")