本文整理匯總了Python中fireworks.LaunchPad.auto_load方法的典型用法代碼示例。如果您正苦於以下問題:Python LaunchPad.auto_load方法的具體用法?Python LaunchPad.auto_load怎麽用?Python LaunchPad.auto_load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類fireworks.LaunchPad
的用法示例。
在下文中一共展示了LaunchPad.auto_load方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from fireworks import LaunchPad [as 別名]
# 或者: from fireworks.LaunchPad import auto_load [as 別名]
def __init__(self, *args, **kwargs):
super(OptTask, self).__init__(*args, **kwargs)
# Configuration attrs
lp = self.get("launchpad", LaunchPad.auto_load())
if isinstance(lp, LaunchPad):
lp = lp.to_dict()
self.lpad = LaunchPad.from_dict(lp)
self.opt_label = self.get("opt_label", "opt_default")
self.c = getattr(self.lpad.db, self.opt_label)
self.config = self.c.find_one({"doctype": "config"})
if self.config is None:
raise NotConfiguredError("Please use MissionControl().configure to "
"configure the optimization database "
"({} - {}) before running OptTask."
"".format(self.lpad.db, self.opt_label))
self.wf_creator = deserialize(self.config["wf_creator"])
self.x_dims = self.config["dimensions"]
self._xdim_types = self.config["dim_types"]
self.is_discrete_all = self.config["is_discrete_all"]
self.is_discrete_any = self.config["is_discrete_any"]
self.wf_creator_args = self.config["wf_creator_args"] or []
self.wf_creator_kwargs = self.config["wf_creator_kwargs"] or {}
self.predictor = self.config["predictor"]
self.predictor_args = self.config["predictor_args"] or []
self.predictor_kwargs = self.config["predictor_kwargs"] or {}
self.maximize = self.config["maximize"]
self.n_search_pts = self.config["n_search_pts"]
self.n_train_pts = self.config["n_train_pts"]
self.n_bootstraps = self.config["n_bootstraps"]
self.acq = self.config["acq"]
self.space_file = self.config["space_file"]
self.onehot_categorical = self.config["onehot_categorical"]
self.duplicate_check = self.config["duplicate_check"]
self.get_z = self.config["get_z"]
if self.get_z:
self.get_z = deserialize(self.config['get_z'])
else:
self.get_z = lambda *ars, **kws: []
self.get_z_args = self.config["get_z_args"] or []
self.get_z_kwargs = self.config["get_z_kwargs"] or {}
self.z_file = self.config["z_file"]
self.enforce_sequential = self.config["enforce_sequential"]
self.tolerances = self.config["tolerances"]
self.batch_size = self.config["batch_size"]
self.timeout = self.config["timeout"]
# Declared attrs
self.n_objs = None
plist = [RandomForestRegressor, GaussianProcessRegressor,
ExtraTreesRegressor, GradientBoostingRegressor]
self.builtin_predictors = {p.__name__: p for p in plist}
self._n_cats = 0
self._encoding_info = []
# Query formats
self._completed = {'x': {'$exists': 1}, 'y': {'$exists': 1,
'$ne': 'reserved'},
'z': {'$exists': 1}}
self._manager = {'lock': {'$exists': 1}, 'queue': {'$exists': 1}}
示例2: test_get_lp_and_fw_id_from_task
# 需要導入模塊: from fireworks import LaunchPad [as 別名]
# 或者: from fireworks.LaunchPad import auto_load [as 別名]
def test_get_lp_and_fw_id_from_task(self):
"""
Tests the get_lp_and_fw_id_from_task. This test relies on the fact that the LaunchPad loaded from auto_load
will be different from what is defined in TESTDB_NAME. If this is not the case the test will be skipped.
"""
lp = LaunchPad.auto_load()
if not lp or lp.db.name == TESTDB_NAME:
raise unittest.SkipTest("LaunchPad lp {} is not suitable for this test. Should be available and different"
"from {}".format(lp, TESTDB_NAME))
task = LpTask()
# this will pass the lp
fw1 = Firework([task], spec={'_add_launchpad_and_fw_id': True}, fw_id=1)
# this will not have the lp and should fail
fw2 = Firework([task], spec={}, fw_id=2, parents=[fw1])
wf = Workflow([fw1, fw2])
self.lp.add_wf(wf)
rapidfire(self.lp, self.fworker, m_dir=MODULE_DIR, nlaunches=1)
fw = self.lp.get_fw_by_id(1)
assert fw.state == "COMPLETED"
rapidfire(self.lp, self.fworker, m_dir=MODULE_DIR, nlaunches=1)
fw = self.lp.get_fw_by_id(2)
assert fw.state == "FIZZLED"
示例3: Workflow
# 需要導入模塊: from fireworks import LaunchPad [as 別名]
# 或者: from fireworks.LaunchPad import auto_load [as 別名]
if scan:
wf_name += " - SCAN"
wf = Workflow(fws, name=wf_name)
wf = add_additional_fields_to_taskdocs(wf, {"wf_meta": self.wf_meta})
tag = "magnetic_orderings group: >>{}<<".format(self.uuid)
wf = add_tags(wf, [tag, ordered_structure_origins])
return wf
if __name__ == "__main__":
# for trying workflows
from fireworks import LaunchPad
latt = Lattice.cubic(4.17)
species = ["Ni", "O"]
coords = [[0.00000, 0.00000, 0.00000], [0.50000, 0.50000, 0.50000]]
NiO = Structure.from_spacegroup(225, latt, species, coords)
wf_deformation = get_wf_magnetic_deformation(NiO)
wf_orderings = MagneticOrderingsWF(NiO).get_wf()
lpad = LaunchPad.auto_load()
lpad.add_wf(wf_orderings)
lpad.add_wf(wf_deformation)
示例4: get_wf_density
# 需要導入模塊: from fireworks import LaunchPad [as 別名]
# 或者: from fireworks.LaunchPad import auto_load [as 別名]
"""
# Parameters:
box_scale = 8.9 # edge length of MD box in Angstroms, can also be a numpy array that scales the lattice
packmol_path = "~/packmol/packmol/packmol" # Revise as appropriate
structure = {'H2O':20} # "structure" in this context can be a dict of number of atoms or molecules.
temperature = 320
# Note one can use a pymatgen Structure object also
# E.g. p = Poscar.from_file("POSCAR")
# structure = p.structure
copy_calcs = True # MD runs can be backed up in a desired location
calc_home = '~/test_H2O_wflows' # This is the location to copy the calculations if copy_calcs=True
# Since we specified a molecule, we must also give the path to xyz
# file of a single sample molecule.
xyz_paths = ['H2O.xyz']
name = 'H2O_df_'+str(temperature)
from mpmorph.workflow.workflows import get_wf_density
from fireworks import LaunchPad
amorphous_maker_params = {'box_scale':box_scale, 'packmol_path':packmol_path, 'xyz_paths': xyz_paths, 'tol': 2.0}
wf = get_wf_density(structure, temperature=temperature, pressure_threshold=0.5, nsteps=1000, wall_time=19200, max_rescales=5,
amorphous_maker_params=amorphous_maker_params, copy_calcs=copy_calcs, calc_home=calc_home, name=name)
lp = LaunchPad.auto_load()
lp.add_wf(wf)