本文整理匯總了Python中facerec.model.PredictableModel.compute方法的典型用法代碼示例。如果您正苦於以下問題:Python PredictableModel.compute方法的具體用法?Python PredictableModel.compute怎麽用?Python PredictableModel.compute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類facerec.model.PredictableModel
的用法示例。
在下文中一共展示了PredictableModel.compute方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_model_file
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
def create_model_file(username, image_path, feature, classifier):
# read images and set labels
[X, y] = read_images(image_path)
# Define the model as the combination
model = PredictableModel(feature=feature.value, classifier=classifier.value)
# Compute the Fisherfaces on the given data (in X) and labels (in y):
model.compute(X, y)
# We then save the model, which uses Pythons pickle module:
model_name = username + "_model.pkl"
save_model(model_name, model)
示例2: computeAndSaveModel
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
def computeAndSaveModel(path_to_database, path_for_model_output, size, model_type="Fisherfaces", num_components=0, classifier_neighbours=1):
print "\n[+] Saving new model (confirmed below)."
[X,y,names] = read_images(path_to_database, sz=size)
if model_type == "Eigenfaces":
model = PredictableModel(PCA(num_components=num_components), NearestNeighbor(k=classifier_neighbours), dimensions=size, namesDict=names)
elif model_type == "Fisherfaces":
model = PredictableModel(Fisherfaces(num_components=num_components), NearestNeighbor(k=classifier_neighbours), dimensions=size, namesDict=names)
else:
print "[-] specify the type of model you want to comput as either 'Fisherface' or 'Eigenface' in the computeAndSaveModel function."
return False
model.compute(X,y)
save_model(path_for_model_output, model)
print "\n[+] Saving confirmed. New model saved to:", path_for_model_output
示例3: create_model_db
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
def create_model_db(user, modelpath, feature, classifier, setsize=None):
[X, y], testpersons = read_images_db(user, setsize)
# Define the model as the combination
model = PredictableModel(feature=feature.value, classifier=classifier.value)
# Compute the feature-algorithm on the given data (in X) and labels (in y):
model.compute(X, y)
# We then save the model, which uses Pythons pickle module:
model_name = "{}_{}_model.pkl".format(user.username, user.id)
testpersons_name = "{}_{}_testpersons.pkl".format(user.username, user.id)
#save_model(os.path.join(modelpath, model_name), model)
#with open(os.path.join(modelpath, testpersons_name), "w") as picklefile:
# pickle.dump(testpersons, picklefile)
return model, testpersons
示例4: App
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
class App(object):
def __init__(self, video_src, dataset_fn, face_sz=(130,130), cascade_fn=join(curpath, 'haarcascade_frontalface_alt2.xml')):
self.face_sz = face_sz
self.cam = create_capture(video_src)
ret, self.frame = self.cam.read()
self.detector = CascadedDetector(cascade_fn=cascade_fn, minNeighbors=5, scaleFactor=1.1)
# define feature extraction chain & and classifier)
feature = ChainOperator(TanTriggsPreprocessing(), LBP())
classifier = NearestNeighbor(dist_metric=ChiSquareDistance())
# build the predictable model
self.predictor = PredictableModel(feature, classifier)
# read the data & compute the predictor
self.dataSet = DataSet(filename=dataset_fn,sz=self.face_sz)
self.predictor.compute(self.dataSet.data,self.dataSet.labels)
def run(self):
while True:
ret, frame = self.cam.read()
# resize the frame to half the original size
img = cv2.resize(frame, (frame.shape[1]/2, frame.shape[0]/2), interpolation = cv2.INTER_CUBIC)
imgout = img.copy()
for i,r in enumerate(self.detector.detect(img)):
x0,y0,x1,y1 = r
# get face, convert to grayscale & resize to face_sz
face = img[y0:y1, x0:x1]
face = cv2.cvtColor(face,cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, self.face_sz, interpolation = cv2.INTER_CUBIC)
# get a prediction
prediction = self.predictor.predict(face)
# draw the face area
cv2.rectangle(imgout, (x0,y0),(x1,y1),(0,255,0),2)
# draw the predicted name (folder name...)
draw_str(imgout, (x0-20,y0-20), self.dataSet.names[prediction])
cv2.imshow('videofacerec', imgout)
# get pressed key
ch = cv2.waitKey(10)
if ch == 27:
break
示例5: test_one_method
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
def test_one_method(input_faces, test_faces, feature, classifier, chain=True):
if chain:
feature = ChainOperator(TanTriggsPreprocessing(), feature)
model = PredictableModel(feature, classifier)
id_list, face_list = zip(*input_faces)
start = time.clock()
model.compute(face_list, id_list)
stop = time.clock()
training_time = stop-start
res_list = []
start = time.clock()
for id, image in test_faces:
res = model.predict(image)
res_list.append([id]+res)
stop = time.clock()
predict_time = stop-start
return (training_time, predict_time, res_list)
示例6: checkFace
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
def checkFace(origin_img):
#To do
model = PredictableModel(Fisherfaces(), NearestNeighbor())
result_name = 'unknown'
[X,y,subject_names] = read_images(path)
list_of_labels = list(xrange(max(y)+1))
subject_dictionary = dict(zip(list_of_labels, subject_names))
model.compute(X,y)
gray = cv2.cvtColor(origin_img, cv2.COLOR_BGR2GRAY)
sampleImage = cv2.resize(gray, (256,256))
[ predicted_label, generic_classifier_output] = model.predict(sampleImage)
print [ predicted_label, generic_classifier_output]
if int(generic_classifier_output['distances']) <= 700:
result_name = str(subject_dictionary[predicted_label])
return result_name
示例7: train
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
def train(train_path):
# Now read in the image data. This must be a valid path!
[X,y,class_names] = read_images(train_path)
print X,y,class_names
# Then set up a handler for logging:
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
# Add handler to facerec modules, so we see what's going on inside:
logger = logging.getLogger("facerec")
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
# Define the Fisherfaces as Feature Extraction method:
feature = Fisherfaces()
# Define a 1-NN classifier with Euclidean Distance:
classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
# Define the model as the combination
model = PredictableModel(feature=feature, classifier=classifier)
# Compute the Fisherfaces on the given data (in X) and labels (in y):
model.compute(X, y)
# Then turn the first (at most) 16 eigenvectors into grayscale
# images (note: eigenvectors are stored by column!)
E = []
for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
e = model.feature.eigenvectors[:,i].reshape(X[0].shape)
E.append(minmax_normalize(e,0,255, dtype=np.uint8))
# Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface",
colormap=cm.jet, filename="fisherfaces.png")
# Perform a 10-fold cross validation
cv = KFoldCrossValidation(model, k=10)
cv.validate(X, y)
# And print the result:
cv.print_results()
save_model('model.pkl', model, class_names)
return [model,class_names]
示例8:
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
Xtrain,ytrain=read_images('/home/rishabh/f1/faces aviral train/',(100,129))
Xtest,ytest=read_images('/home/rishabh/f1/faces aviral/',(100,129))
mod1=PredictableModel(PCA(num_components=50),NearestNeighbor(k=1))
mod2=PredictableModel(PCA(num_components=50),NearestNeighbor(k=1,dist_metric=CosineDistance()))
mod3=PredictableModel(Fisherfaces(num_components=50),NearestNeighbor(k=1))
mod4=PredictableModel(Fisherfaces(num_components=50),NearestNeighbor(k=1,dist_metric=CosineDistance()))
mod5=PredictableModel(SpatialHistogram(),NearestNeighbor(k=1))
mod6=PredictableModel(SpatialHistogram(),NearestNeighbor(k=1,dist_metric=CosineDistance()))
mod7=PredictableModel(SpatialHistogram(lbp_operator=LPQ()),NearestNeighbor(k=1))
mod8=PredictableModel(SpatialHistogram(lbp_operator=LPQ()),NearestNeighbor(k=1,dist_metric=CosineDistance()))
mod9=PredictableModel(SpatialHistogram(),NearestNeighbor(k=1,dist_metric=ChiSquareDistance()))
mod10=PredictableModel(SpatialHistogram(),NearestNeighbor(k=1,dist_metric=NormalizedCorrelation()))
mod1.compute(Xtrain,ytrain)
mod2.compute(Xtrain,ytrain)
mod3.compute(Xtrain,ytrain)
mod4.compute(Xtrain,ytrain)
mod5.compute(Xtrain,ytrain)
mod6.compute(Xtrain,ytrain)
mod7.compute(Xtrain,ytrain)
mod8.compute(Xtrain,ytrain)
mod9.compute(Xtrain,ytrain)
mod10.compute(Xtrain,ytrain)
#For Training Size 3
p=np.array(np.ones(len(Xtest))*9,dtype=int)
count=0
示例9: dataset
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
# add handler to facerec modules
logger = logging.getLogger("facerec")
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
# load a dataset (e.g. AT&T Facedatabase)
dataSet = DataSet("/root/libface/img/yalefaces")
# define Fisherfaces as feature extraction method
feature = Fisherfaces()
# define a 1-NN classifier with Euclidean Distance
classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
# define the model as the combination
model = PredictableModel(feature=feature, classifier=classifier)
# show fisherfaces
model.compute(dataSet.data, dataSet.labels)
#try to recgonize
im = Image.open("/root/libface/img/reg.jpg")
im = im.convert("L")
ar = []
ar.append(np.asarray(im, dtype=np.uint8))
print(dataSet.names[model.predict(ar)])
# turn the first (at most) 16 eigenvectors into grayscale
# images (note: eigenvectors are stored by column!)
"""
E = []
for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
e = model.feature.eigenvectors[:,i].reshape(dataSet.data[0].shape)
E.append(minmax_normalize(e,0,255, dtype=np.uint8))
# plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
示例10: read_images
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
[X,y] = read_images(sys.argv[1])
# Then set up a handler for logging:
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
# Add handler to facerec modules, so we see what's going on inside:
logger = logging.getLogger("facerec")
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
# Define the Fisherfaces as Feature Extraction method:
feature = Fisherfaces()
# Define a 1-NN classifier with Euclidean Distance:
classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
# Define the model as the combination
model = PredictableModel(feature=feature, classifier=classifier)
# Compute the Fisherfaces on the given data (in X) and labels (in y):
model.compute(X, y)
# Then turn the first (at most) 16 eigenvectors into grayscale
# images (note: eigenvectors are stored by column!)
E = []
for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
e = model.feature.eigenvectors[:,i].reshape(X[0].shape)
E.append(minmax_normalize(e,0,255, dtype=np.uint8))
# Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png")
# Perform a 10-fold cross validation
cv = KFoldCrossValidation(model, k=10)
cv.validate(X, y)
# And print the result:
print cv
示例11: Fisherfaces
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
# Then set up a handler for logging:
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
# Add handler to facerec modules, so we see what's going on inside:
logger = logging.getLogger("facerec")
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
# Define the Fisherfaces as Feature Extraction method:
feature = Fisherfaces()
# Define a 1-NN classifier with Euclidean Distance:
classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1)
# Define the model as the combination
my_model = PredictableModel(feature=feature, classifier=classifier)
# Compute the Fisherfaces on the given data (in X) and labels (in y):
my_model.compute(X, y)
# We then save the model, which uses Pythons pickle module:
save_model('model.pkl', my_model)
model = load_model('model.pkl')
# Then turn the first (at most) 16 eigenvectors into grayscale
# images (note: eigenvectors are stored by column!)
E = []
for i in xrange(min(model.feature.eigenvectors.shape[1], 16)):
e = model.feature.eigenvectors[:,i].reshape(X[0].shape)
E.append(minmax_normalize(e,0,255, dtype=np.uint8))
# Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png")
# Perform a 10-fold cross validation
cv = KFoldCrossValidation(model, k=10)
cv.validate(X, y)
# And print the result:
示例12: PredictableModel
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
# Define the model as the combination
# model = PredictableModel(feature=feature, classifier=classifier)
# Compute the model on the given data (in X) and labels (in y):
feature = ChainOperator(TanTriggsPreprocessing(), feature)
# classifier = NearestNeighbor()
model = PredictableModel(feature, classifier)
# images in one list, id's on another
id_list, face_list = zip(*input_faces)
print "Train the model"
start = time.clock()
# model.compute(X, y)
model.compute(face_list, id_list)
stop = time.clock()
print "Training done in", stop-start, " next...find a face"
# test_path = "/Users/matti/Documents/forritun/att_faces/"
test_path = "/Users/matti/Dropbox/Skjöl/Meistaraverkefni/server/test_faces_02"
"""
target = "10.bmp"
if len(sys.argv) > 3:
target = sys.argv[3]
"""
fp = utils.FaceProcessor()
test_list = [
("10.bmp", 41),
示例13: read_images
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
##count = 0
##if not os.path.exists(os.path.join(pathdir+name)):
## os.makedirs(os.path.join(pathdir+name))
## print 'No path'
######################################
#Going through the database
[X,y,subject_names] = read_images(pathdir)
#Creates a list of the number of members
list_of_labels = list(xrange(max(y)+1))
#Maps a dictionary between the numbers and the names of the individuals
subject_dictionary = dict(zip(list_of_labels, subject_names))
#Using the 3 Models to compute Similarities Based on Data Sets
model.compute(X,y)
model1.compute(X,y)
model2.compute(X,y)
######################################
#Loading the Pictures
pictures = open('links.txt','r')
for i in pictures:
i= i.strip()
if i[:4] == 'http':
req = urllib.urlopen(i)
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
#Each picture we analyze is stored in img
img = cv2.imdecode(arr, -1)
#Now doing facial Detection. For more information, refer to Facial Detection.py. The process is the same as the one done here
示例14: list
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
# [ 1, first_name in database]
# [ 2, second_name in database]
# ...
# [ n, last_name in database]
#
# This dictionary is used in for the greeting and labeling
#
list_of_labels = list(xrange(max(y)+1))
subject_dictionary = dict(zip(list_of_labels, subject_names))
#
# This constructs the linear distriminant analysis matrix, which is used for facial identification
#
initial_time = time.time()
print "Constructing linear discriminant analysis matrix for facial identification: "
model.compute(Z,y)
print "Construction completed in {0:.2f} seconds.\n".format(time.time() - initial_time)
current_state = "Tracking"
#
# Get a new frame from the webcam
#
rval, frame = vc.read()
#
# Copy the frame adn convert the whole thing to black and white to make recognition easier
#
img = frame
rows,cols,ch = frame.shape
示例15: FaceDatabase
# 需要導入模塊: from facerec.model import PredictableModel [as 別名]
# 或者: from facerec.model.PredictableModel import compute [as 別名]
class FaceDatabase(object):
def __init__(self, database_folder, feature_parameter="LPQ", metric="chi", k=3):
self.model = None
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger = logging.getLogger("facerec")
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
path = database_folder
start = time.clock()
input_faces = utils.read_images_from_single_folder(path)
stop = time.clock()
print("read {}, images from {} in {} seconds.".format(len(input_faces), path, stop-start))
feature = None
m = {
"fisher": Fisherfaces,
"fisher80": Fisherfaces,
"pca": PCA,
"pca10": PCA,
"lda": LDA,
"spatial": SpatialHistogram,
"LPQ": SpatialHistogram
}
if feature_parameter in m:
if feature_parameter == 'LPQ':
feature = SpatialHistogram(LPQ())
self.threshold = threshold_function(71.4, 70)
elif feature_parameter == 'fisher80':
feature = Fisherfaces(80)
self.threshold = threshold_function(0.61, 0.5)
elif feature_parameter == 'fisher':
feature = Fisherfaces()
self.threshold = threshold_function(0.61, 0.5)
elif feature_parameter == 'pca80':
feature = PCA(80)
else:
feature = m[feature_parameter]()
metric_param = None
d = {"euclid": EuclideanDistance,
"cosine": CosineDistance,
"normal": NormalizedCorrelation,
"chi": ChiSquareDistance,
"histo": HistogramIntersection,
"l1b": L1BinRatioDistance,
"chibrd": ChiSquareBRD
}
if metric in d:
metric_param = d[metric]()
else:
metric_param = ChiSquareDistance()
classifier = NearestNeighbor(dist_metric=metric_param, k=k)
feature = ChainOperator(TanTriggsPreprocessing(), feature)
# feature = ChainOperator(TanTriggsPreprocessing(0.1, 10.0, 1.0, 3.0), feature)
self.model = PredictableModel(feature, classifier)
# images in one list, id's on another
id_list, face_list = zip(*input_faces)
print "Train the model"
start = time.clock()
# model.compute(X, y)
self.model.compute(face_list, id_list)
stop = time.clock()
print "Training done in", stop-start, " next...find a face"
# threshold_lpq_normalized = threshold_function(0.67, 0.3)
# threshold_lpq_chisquared = threshold_function(71.4, 70)
# threshold_spatial_cosine = threshold_function(0.908, 0.908)
# threshold_spatial_chisuearbrd = threshold_function()
# threshold = threshold_lpq_normalized
def find_face(self, input_face_image):
assert self.model, "Model is not valid"
res = self.model.predict(input_face_image)
print res
return self.threshold(res)