當前位置: 首頁>>代碼示例>>Python>>正文


Python api.VPlotContainer類代碼示例

本文整理匯總了Python中enthought.chaco.api.VPlotContainer的典型用法代碼示例。如果您正苦於以下問題:Python VPlotContainer類的具體用法?Python VPlotContainer怎麽用?Python VPlotContainer使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了VPlotContainer類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _main_tab_default

    def _main_tab_default(self):
        self.sal_plot = Plot(self.plot_data)
        self.sal_plot.plot(('time_ds', 'sal_ds'), type='line')
        #sal_plot.overlays.append(PlotAxis(sal_plot, orientation='left'))
        #bottom_axis = PlotAxis(sal_plot, orientation="bottom",# mapper=xmapper,
        #                   tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem()))
        #sal_plot.overlays.append(bottom_axis)

        #hgrid, vgrid = add_default_grids(sal_plot)
        #vgrid.tick_generator = bottom_axis.tick_generator
        #sal_plot.tools.append(PanTool(sal_plot, constrain=True,
        #                              constrain_direction="x"))
        #sal_plot.overlays.append(ZoomTool(sal_plot, drag_button="right",
        #                                  always_on=True,
        #                                  tool_mode="range",
        #                                  axis="index",
        #                                  max_zoom_out_factor=10.0,
        #                                  ))

        container = VPlotContainer(bgcolor="lightblue",
                                   spacing=40,
                                   padding=50,
                                   fill_padding=False)
        container.add(sal_plot)
        #container.add(price_plot)
        #container.overlays.append(PlotLabel("Salinity Plot with Date Axis",
        #                                    component=container,
        #                                    #font="Times New Roman 24"))
        #                                    font="Arial 24"))
        return container
開發者ID:ErnestSTo,項目名稱:pint,代碼行數:30,代碼來源:qaqc_viewer.py

示例2: _create_plot_component

def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, padding=50)
    plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    plot1.plot(("index", "y3"), name="j_3", color="blue")

    # Attach some tools to the plot
    plot1.tools.append(PanTool(plot1))
    zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
    plot1.overlays.append(zoom)

    # Add the scrollbar
    hscrollbar = PlotScrollBar(component=plot1, axis="index", resizable="h",
                               height=15)
    plot1.padding_top = 0
    hscrollbar.force_data_update()

    # Create a container and add our plots
    container = VPlotContainer()
    container.add(plot1)
    container.add(hscrollbar)

    return container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:30,代碼來源:scrollbar.py

示例3: create_zoomed_plot

def create_zoomed_plot():
    try:
        x,y = read_music_data()
    except:
        x = linspace(-10*pi, 10*pi, numpts)
        y = sin(x)

    main_plot = create_gridded_line_plot(x,y)
    zoom_plot = create_gridded_line_plot(x,y)

    outer_container = VPlotContainer(padding=30,
                                     fill_padding=True,
                                     spacing=50,
                                     stack_order='top_to_bottom',
                                     bgcolor='lightgray',
                                     use_backbuffer=True)

    outer_container.add(main_plot)
    outer_container.add(zoom_plot)

    main_plot.controller = RangeSelection(main_plot)

    zoom_overlay = ZoomOverlay(source=main_plot, destination=zoom_plot)
    outer_container.overlays.append(zoom_overlay)

    return outer_container
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:26,代碼來源:zoom_plot.py

示例4: _create_plot_component

def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, float(SAMPLING_RATE)/2, num=NUM_SAMPLES/2)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(NUM_SAMPLES/2)
    obj.spectrum_data.set_data('amplitude', empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    spec_renderer = obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
                           color="red")[0]
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 5.0
    obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
    obj.spectrum_plot.value_axis.title = 'Amplitude'

    # Time Series plot
    times = linspace(0.0, float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(NUM_SAMPLES)
    obj.time_data.set_data('amplitude', empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue")
    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = 'Time (seconds)'
    obj.time_plot.value_axis.title = 'Amplitude'
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -0.2
    time_range.high = 0.2

    # Spectrogram plot
    values = [zeros(NUM_SAMPLES/2) for i in xrange(SPECTROGRAM_LENGTH)]
    p = WaterfallRenderer(index = spec_renderer.index, values = values,
            index_mapper = LinearMapper(range = obj.spectrum_plot.index_mapper.range),
            value_mapper = LinearMapper(range = DataRange1D(low=0, high=SPECTROGRAM_LENGTH)),
            y2_mapper = LinearMapper(low_pos=0, high_pos=8,
                            range=DataRange1D(low=0, high=15)),
            )
    spectrogram_plot = p
    obj.spectrogram_plot = p
    dummy = Plot()
    dummy.padding = 50
    dummy.index_axis.mapper.range = p.index_mapper.range
    dummy.index_axis.title = "Frequency (hz)"
    dummy.add(p)

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)

    c2 = VPlotContainer()
    c2.add(dummy)
    c2.add(container)

    return c2
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:59,代碼來源:spec_waterfall.py

示例5: _createResultsPane

    def _createResultsPane(self):
        container = VPlotContainer(resizable = "hv", bgcolor="lightgray", fill_padding=True, padding = 10)
        #container = Container(resizable = "hv", bgcolor="lightgray", fill_padding=True, padding = 10)
        addTitleOverlay(container, 'Results Pane')

        container.add(self._createVoltageTraceComponent())

        return container
開發者ID:NeuroArchive,項目名稱:morphforge,代碼行數:8,代碼來源:testMike.py

示例6: _createConfigurationPane

    def _createConfigurationPane(self):
        container = VPlotContainer(resizable = "hv", bgcolor="lightgray", fill_padding=True, padding = 10)
        #container = Container(resizable = "hv", bgcolor="lightgray", fill_padding=True, padding = 10)
        addTitleOverlay(container, 'Configuration Pane')

        container.add(self._create_cellConfigComponent())
        container.add_trait ('self.surface_area_um2', self.surface_area_um2)
        #traits_view = View(Item('self.surface_area_um2', editor=ComponentEditor(), show_label=False), width=500, height=500, resizable=True, title="Chaco Plot")

        #container.add(traits_view)
        return container
開發者ID:NeuroArchive,項目名稱:morphforge,代碼行數:11,代碼來源:testMike.py

示例7: normal_left_dclick

    def normal_left_dclick(self, event):
        plot = Plot(self.data)
        for data, kw in self.command_queue:
            plot.plot(data, **kw)
            plot.title = self.title

        plot.title = self.title
        container = VPlotContainer(bgcolor=WindowColor)
        container.add(plot)
        plot.tools.append(PanTool(plot))
        plot.overlays.append(ZoomTool(plot))
        window = PlotWindow(plot=container)
        window.edit_traits(kind="live", parent=event.window.control)
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:13,代碼來源:popupable_plot.py

示例8: _create_plot_component

    def _create_plot_component(self):
        spectrum_plot = Plot(self.data)
        spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum", color=(1, 0, 0), line_width=2)
        spectrum_plot.padding_bottom = 20
        spectrum_plot.padding_top = 20
        spectrum_plot.index_range.low = MIN_FREQUENCY
        spectrum_plot.index_range.high = MAX_FREQUENCY
        spec_range = spectrum_plot.plots.values()[0][0].value_mapper.range
        spec_range.low = 0.0
        spec_range.high = 65536.0
        spectrum_plot.index_axis.title = 'Frequency(Hz)'
        spectrum_plot.value_axis.title = 'Amplitude(dB)'

        container = VPlotContainer()
        container.add(spectrum_plot)
        return container        
開發者ID:zack1030,項目名稱:SpectrumMonitor,代碼行數:16,代碼來源:spectrogram_realtime.py

示例9: __init__

    def __init__(self):
        # 首先需要調用父類的初始化函數
        super(TriangleWave, self).__init__()

        # 創建繪圖數據集,暫時沒有數據因此都賦值為空,隻是創建幾個名字,以供Plot引用
        self.plot_data = ArrayPlotData(x=[], y=[], f=[], p=[], x2=[], y2=[])

        # 創建一個垂直排列的繪圖容器,它將頻譜圖和波形圖上下排列
        self.container = VPlotContainer()

        # 創建波形圖,波形圖繪製兩條曲線: 原始波形(x,y)和合成波形(x2,y2)
        self.plot_wave = self._create_plot(("x", "y"), "Triangle Wave")
        self.plot_wave.plot(("x2", "y2"), color="red")

        # 創建頻譜圖,使用數據集中的f和p
        self.plot_fft = self._create_plot(("f", "p"), "FFT", type="scatter")

        # 將兩個繪圖容器添加到垂直容器中
        self.container.add(self.plot_wave)
        self.container.add(self.plot_fft)

        # 設置
        self.plot_wave.x_axis.title = "Samples"
        self.plot_fft.x_axis.title = "Frequency pins"
        self.plot_fft.y_axis.title = "(dB)"

        # 改變fftsize為1024,因為Enum的默認缺省值為枚舉列表中的第一個值
        self.fftsize = 1024
開發者ID:crazypenguincode,項目名稱:python_ebook,代碼行數:28,代碼來源:fft_triangle_GUI.py

示例10: _field_data_plots_default

 def _field_data_plots_default(self):
     
     # Plot data and vertical container object
     data = ArrayPlotData(**self._get_field_plots_data())
     container = VPlotContainer()
     
     # Add individual distributions plots to container
     for key in ('area', 'diameter', 'average', 'peak'):
         p = Plot(data)
         p.plot((key+'_bins', key), name=key, type='polygon', edge_width=2, 
             edge_color='red', face_color='salmon')
         p.x_axis.title = key
         p.y_axis.title = 'count'
         p.padding = [50, 30, 20, 40]
         container.add(p)
     
     return container
開發者ID:jdmonaco,項目名稱:grid-remapping-model,代碼行數:17,代碼來源:placemap_viewer.py

示例11: test_halign

 def test_halign(self):
     container = VPlotContainer(bounds=[200,300], halign="center")
     comp1 = StaticPlotComponent([100,200])
     container.add(comp1)
     container.do_layout()
     self.failUnlessEqual(comp1.position, [50,0])
     container.halign="right"
     container.do_layout(force=True)
     self.failUnlessEqual(comp1.position, [100,0])
     return
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:10,代碼來源:plotcontainer_test_case.py

示例12: _create_plot_component

    def _create_plot_component(self):
        self.data = ArrayPlotData()
        self.data["frequency"] = np.linspace(0., SAMPLING_RATE/2.0, num=NUM_SAMPLES/2)
        for i in xrange(NUM_LINES):
            self.data['amplitude%d' % i] = np.zeros(NUM_SAMPLES/2)
        self.data["time"] = np.linspace(0., float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
        self.data['time_amplitude'] = np.zeros(NUM_SAMPLES)        
        self.data['imagedata'] = np.zeros(( NUM_SAMPLES/2, SPECTROGRAM_LENGTH))
        
        spectrum_plot = Plot(self.data)
        for i in xrange(NUM_LINES):
            if i==NUM_LINES-1:
                linewidth = 2
                color = (1,0,0)
            else:
                linewidth = 1
                c = (NUM_LINES-i-1)/float(NUM_LINES)
                color = (1, 0.5+c/2, c)
            spectrum_plot.plot(("frequency", "amplitude%d" % i), name="Spectrum%d" % i, 
                color=color, line_width=linewidth)
        spectrum_plot.padding_bottom = 20
        spectrum_plot.padding_top = 20
        spec_range = spectrum_plot.plots.values()[0][0].value_mapper.range
        spec_range.low = -90
        spec_range.high = 0.0
        spectrum_plot.index_axis.title = 'Frequency(Hz)'
        spectrum_plot.value_axis.title = 'Amplitude(dB)'

        time_plot = Plot(self.data)
        time_plot.plot(("time", "time_amplitude"), name="Time", color="blue")
        time_plot.padding_top = 20
        time_plot.padding_bottom = 20
        time_plot.index_axis.title = 'Time (seconds)'
        time_plot.value_axis.title = 'Amplitude'
        time_range = time_plot.plots.values()[0][0].value_mapper.range
        time_range.low = -1.5
        time_range.high = 1.5

        spectrogram_plot = Plot(self.data)
        spectrogram_time = (0.0, SPECTROGRAM_LENGTH*NUM_SAMPLES/float(SAMPLING_RATE))
        spectrogram_freq = (0.0, SAMPLING_RATE/2.0)
        spectrogram_plot.img_plot('imagedata',
            name='Spectrogram',
            xbounds=spectrogram_time,
            ybounds=spectrogram_freq,
            colormap=cm.reverse(cm.Blues),
        )
        range_obj = spectrogram_plot.plots['Spectrogram'][0].value_mapper.range
        range_obj.high = -20
        range_obj.low = -60
        spectrogram_plot.padding_bottom = 20
        spectrogram_plot.padding_top = 20

        container = VPlotContainer()
        container.add(time_plot)    
        container.add(spectrum_plot)
        container.add(spectrogram_plot)

        return container        
開發者ID:shark803,項目名稱:PythonCodeFromBook,代碼行數:59,代碼來源:spectrogram_realtime.py

示例13: _create_window

    def _create_window(self):

        # Create the data and datasource objects
        # In order for the date axis to work, the index data points need to
        # be in units of seconds since the epoch.  This is because we are using
        # the CalendarScaleSystem, whose formatters interpret the numerical values
        # as seconds since the epoch.
        numpoints = 500
        index = create_dates(numpoints)
        returns = random.lognormal(0.01, 0.1, size=numpoints)
        price = 100.0 * cumprod(returns)
        volume = abs(random.normal(1000.0, 1500.0, size=numpoints) + 2000.0)

        time_ds = ArrayDataSource(index)
        vol_ds = ArrayDataSource(volume, sort_order="none")
        price_ds = ArrayDataSource(price, sort_order="none")

        # Create the price plots
        price_plot, mini_plot = self._create_price_plots(time_ds, price_ds)
        price_plot.index_mapper.domain_limits = (index[0], index[-1])
        self.price_plot = price_plot
        self.mini_plot = mini_plot

        # Create the volume plot
        vol_plot = self._create_vol_plot(time_ds, vol_ds)
        vol_plot.index_mapper.domain_limits = (index[0], index[-1])

        # Set the plot's bottom axis to use the Scales ticking system
        ticker = ScalesTickGenerator(scale=CalendarScaleSystem())
        for plot in price_plot, mini_plot, vol_plot:
            bottom_axis = PlotAxis(plot, orientation="bottom",
                                   tick_generator = ticker)
            plot.overlays.append(bottom_axis)
            plot.overlays.append(PlotAxis(plot, orientation="left"))
            hgrid, vgrid = add_default_grids(plot)
            vgrid.tick_generator = bottom_axis.tick_generator

        container = VPlotContainer(bgcolor = "lightgray",
                                   spacing = 40,
                                   padding = 50,
                                   fill_padding=False)
        container.add(mini_plot, vol_plot, price_plot)

        return Window(self, -1, component=container)
開發者ID:brycehendrix,項目名稱:chaco,代碼行數:44,代碼來源:stock_prices.py

示例14: _unit_data_plots_default

 def _unit_data_plots_default(self):
     
     # Plot data and vertical container object
     data = ArrayPlotData(**self._get_unit_plots_data())
     container = VPlotContainer()
     
     # Add individual distribution plots to container
     for key in ('avg_diameter', 'avg_area', 'coverage', 'max_r', 'num_fields'):
         p = Plot(data)
         p.plot((key+'_bins', key), name=key, type='polygon', edge_width=2, 
             edge_color='mediumblue', face_color='lightsteelblue')
         p.x_axis.title = key
         p.y_axis.title = 'count'
         p.padding = [50, 30, 20, 40]
         if key == 'num_fields':
             p.x_axis.tick_interval = 1
         container.add(p)
     
     return container
開發者ID:jdmonaco,項目名稱:grid-remapping-model,代碼行數:19,代碼來源:placemap_viewer.py

示例15: __init__

 def __init__(self):
     super(EqualizerDesigner, self).__init__()
     self.plot_data = ArrayPlotData(f=FREQS, gain=[], phase=[])
     self.plot_gain = self._create_plot(("f", "gain"), "Gain(dB)")
     self.plot_phase = self._create_plot(("f", "phase"), "Phase(degree)")
     self.container = VPlotContainer()
     self.container.add( self.plot_phase )                
     self.container.add( self.plot_gain )
     self.plot_gain.padding_bottom = 20
     self.plot_phase.padding_top = 20
開發者ID:shark803,項目名稱:PythonCodeFromBook,代碼行數:10,代碼來源:filter_equalizer_designer.py


注:本文中的enthought.chaco.api.VPlotContainer類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。