當前位置: 首頁>>代碼示例>>Python>>正文


Python easydev.Progress類代碼示例

本文整理匯總了Python中easydev.Progress的典型用法代碼示例。如果您正苦於以下問題:Python Progress類的具體用法?Python Progress怎麽用?Python Progress使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Progress類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: process_single_reads

def process_single_reads(reader, modifiers, filters, n_progress=-1):
	"""
	Loop over reads, find adapters, trim reads, apply modifiers and
	output modified reads.

	Return a Statistics object.
	"""
	n = 0  # no. of processed reads
	total_bp = 0
	if n_progress != -1:
		try:
			from easydev import Progress
			pb = Progress(n_progress)
			count = 0
		except:
			n_progress = -1

	for read in reader:
		n += 1
		total_bp += len(read.sequence)
		for modifier in modifiers:
			read = modifier(read)
		for filter in filters:
			if filter(read):
				break
		if n_progress != -1:
			count += 1
			pb.animate(count)

	return Statistics(n=n, total_bp1=total_bp, total_bp2=None)
開發者ID:cokelaer,項目名稱:cutadapt,代碼行數:30,代碼來源:cutadapt.py

示例2: compounds2accession

    def compounds2accession(self, compounds):
        """For each compound, identifies the target and corresponding UniProt
        accession number

        This is not part of ChEMBL API

        ::

            # we recommend to use cache if you use this method regularly
            c = Chembl(cache=True)
            drugs = c.get_approved_drugs()

            # to speed up example
            drugs = drugs[0:20]
            IDs = [x['molecule_chembl_id] for x in drugs]

            c.compounds2accession(IDs)

        """
        # we jump from compounds to targets through activities
        # Here this is a one to many mapping so we initialise a default
        # dictionary.
        from collections import defaultdict
        compound2target = defaultdict(set)

        filter = "molecule_chembl_id__in={}"
        from easydev import Progress
        pb = Progress(len(compounds))
        for i in range(0, len(compounds)):
            # FIXME could get activities by bunch using 
            # ",".join(compounds[i:i+10) for example
            activities = self.get_activity(filters=filter.format(compounds[i]))
            # get target ChEMBL IDs from activities
            for act in activities:
                compound2target[act['molecule_chembl_id']].add(act['target_chembl_id'])
            pb.animate(i+1)

        # What we need is to get targets for all targets found in the previous
        # step. For each compound/drug there are hundreds of targets though. And
        # we will call the get_target for each list of hundreds targets. This
        # will take forever. Instead, because there are *only* 12,000 targets,
        # let us download all of them ! This took about 4 minutes on this test but
        # if you use the cache, next time it will be much much quicker. This is
        # not down at the activities level because there are too many entries

        targets = self.get_target(limit=-1)

        # identifies all target chembl id to easily retrieve the entry later on
        target_names = [target['target_chembl_id'] for target in targets]

        # retrieve all uniprot accessions for all targets of each compound
        for compound, targs in compound2target.items():
            accessions = set()
            for target in targs:
                index = target_names.index(target)
                accessions = accessions.union([comp['accession'] 
                    for comp in targets[index]['target_components']])
            compound2target[compound] = accessions
 
        return compound2target
開發者ID:cokelaer,項目名稱:bioservices,代碼行數:60,代碼來源:chembl.py

示例3: _get_G

    def _get_G(self, gold):
        from easydev import Progress
        import scipy.sparse
        regulators = list(set(gold[0]))
        targets = list(set(gold[[0,1]].stack()))

        N, M = gold[0].max(), gold[1].max()

        ## A will store indices goind from 0 (not 1) to N-1
        # hence the -1 indices when handling A if i,j are the
        # values of the gene
        A = np.zeros((N, M))
        for row in gold[[0,1]].values:
            i, j = row
            A[i-1, j-1] = 1
        A_sparse = scipy.sparse.csr_matrix(A)

        #N, M = len(regulators), len(targets)
        G = np.zeros((N, M))

        pb = Progress(len(regulators), 1)
        for i, x in enumerate(regulators):
            for j, y in enumerate(targets):
                if A[x-1, y-1] == 1:
                    G[x-1, y-1] = 1
                elif x != y:
                    G[x-1, y-1] = -1
            pb.animate(i+1)
        return G
開發者ID:doaa-altarawy,項目名稱:dreamtools,代碼行數:29,代碼來源:scoring.py

示例4: _opt_ridge_lasso

    def _opt_ridge_lasso(self, drug_name, feature_name, method, alphas=None):

        if alphas is None:
            alphas = pylab.linspace(0,1, 20)

        mses = []
        params = []
        method_buf = self.settings.regression_method
        alpha_buf = self.settings.elastic_net.alpha

        pb = Progress(len(alphas))
        for j, alpha in enumerate(alphas):
            self.settings.regression_method = method
            self.settings.elastic_net.alpha = alpha
            odof = self.anova_one_drug_one_feature(drug_name,
                    feature_name)
            anova = self._get_anova_summary(self.data_lm,
                    output='dataframe')
            #mses.append(anova.ix['Residuals']['Sum Sq'])
            mses.append(anova.ix['tissue']['F value'])
            #mses.append(anova['Sum Sq'].sum())
            pb.animate(j+1)
            params.append(self.data_lm.params)
        self.settings.regression_method = method_buf
        self.settings.elastic_net.alpha = alpha_buf
        return alphas, mses, params
開發者ID:saezrodriguez,項目名稱:gdsctools,代碼行數:26,代碼來源:anova.py

示例5: _score_challengeA_bunch

    def _score_challengeA_bunch(self, filenames, subname):

        from easydev import Progress

        pb = Progress(5, 1)
        pb.animate(0)
        results = []
        for i, filename in enumerate(filenames):
            res = self.score_challengeA(filename, subname + "_" + str(i + 1))
            pb.animate(i + 1)
            results.append(res)

        aupr_score = -np.mean(np.log10([x["p_auroc"] for x in results]))
        auroc_score = -np.mean(np.log10([x["p_aupr"] for x in results]))
        score = (aupr_score + auroc_score) / 2.0

        df = pd.TimeSeries()
        df["Overall Score"] = score
        df["AUPR score (pval)"] = aupr_score
        df["AUROC score (pval)"] = aupr_score
        for i in range(1, 6):
            df["AUPR Net %s" % i] = results[i - 1]["aupr"]
        for i in range(1, 6):
            df["AUROC Net %s" % i] = results[i - 1]["auroc"]

        return df
開發者ID:Sage-Bionetworks,項目名稱:dreamtools,代碼行數:26,代碼來源:scoring.py

示例6: diagnostics

    def diagnostics(self):
        """Return dataframe with information about the analysis

        """
        n_drugs = len(self.ic50.drugIds)
        n_features = len(self.features.features) - self.features.shift
        n_combos = n_drugs * n_features
        feasible = 0
        pb = Progress(n_drugs, 1)
        counter = 0
        for drug in self.ic50.drugIds:
            for feature in self.features.features[self.features.shift:]:
                dd = self._get_one_drug_one_feature_data(drug, feature,
                        diagnostic_only=True)
                if dd.status is True:
                    feasible += 1
            counter += 1
            pb.animate(counter)

        results = {
                'n_drug': n_drugs,
                'n_combos': n_combos,
                'feasible_tests': feasible,
                'percentage_feasible_tests': float(feasible)/n_combos*100}
        return results
開發者ID:howard-lightfoot,項目名稱:gdsctools,代碼行數:25,代碼來源:models.py

示例7: create_html_drugs

    def create_html_drugs(self):
        """Create an HTML page for each drug"""
        # group by drugs
        all_drugs = list(self.df['DRUG_ID'].unique())

        df = self.get_significant_set()
        groups = df.groupby('DRUG_ID')
        if self.verbose:
            print("Creating individual HTML pages for each drug")
        N = len(groups.indices.keys())
        N = len(all_drugs)
        pb = Progress(N)
        for i, drug in enumerate(all_drugs):
            # enumerate(groups.indices.keys()):
            # get the indices and therefore subgroup
            if drug in groups.groups.keys():
                subdf = groups.get_group(drug)
            else:
                subdf = {}

            html = HTMLOneDrug(self, self.df, subdf, drug)
            html.create_report(onweb=False)
            if self.settings.animate:
                pb.animate(i+1)
        if self.settings.animate: print("\n")
開發者ID:CancerRxGene,項目名稱:gdsctools,代碼行數:25,代碼來源:anova_report.py

示例8: filling_chembl_pubchem_using_unichem

    def filling_chembl_pubchem_using_unichem(self):
        """

        """
        N = len(self.drug_ids)
        pb = Progress(N)
        for i,this in enumerate(self.drug_ids):
            entry = self.dd.df.ix[this]
            # if no information is provided, we will need to get it 
            # from chemspider

            # From the database, when chembl is provided, it is unique
            # same for chemspider and pubchem and CAS
            select = entry[['CHEMSPIDER', 'CHEMBL', 'PUBCHEM']]
            if select.count() == 0:
                name = self.dd.df.ix[this].DRUG_NAME
                results = self._cs_find(name)
                if len(results) == 0:
                    # nothing found
                    pass
                elif len(results) == 1:
                    self.dd_filled.df.ix[this].loc['CHEMSPIDER'] = results[0]
                else:
                    # non unique
                    #chemspider = ",".join([str(x) for x in results])
                    self.dd_filled.df.ix[this].loc['CHEMSPIDER'] = results
            pb.animate(i+1)

        # Search in chemspider systematically
        for i, this in enumerate(self.drug_ids):
            entry = self.dd.df.ix[this]
            if select.count() == 1:
                res = self._cs_find(drug)

            pb.animate(i+1)
開發者ID:CancerRxGene,項目名稱:gdsctools,代碼行數:35,代碼來源:drugs.py

示例9: to_kmer_content

    def to_kmer_content(self, k=7):
        """Return a Series with kmer count across all reads

        :param int k: (default to 7-mers)
        :return: Pandas Series with index as kmer and values as count.

        Takes about 30 seconds on a million reads.
        """
        # Counter is slow if we apply it on each read.
        # .count is slow as well
        import collections
        from sequana.kmer import get_kmer
        counter = collections.Counter()
        pb = Progress(len(self))
        buffer_ = []
        for i, this in enumerate(self):
            buffer_.extend(list(get_kmer(this['sequence'], k)))
            if len(buffer_) > 100000:
                counter += collections.Counter(buffer_)
                buffer_ = []
            pb.animate(i)
        counter += collections.Counter(buffer_)

        ts = pd.Series(counter)
        ts.sort_values(inplace=True, ascending=False)

        return ts
開發者ID:sequana,項目名稱:sequana,代碼行數:27,代碼來源:fastq.py

示例10: search_from_smile_inchembl

    def search_from_smile_inchembl(self):

        N = len(self.drug_ids)

        pb = Progress(N)
        self.results_chembl = {}
        self.results_chemspider = {}

        for i in range(0, N):
            drug = self.drug_ids[i]
            self.results_chembl[drug] = []

            if self.results[drug]:
                for chemspider_id in self.results[drug]:
                    chemspider_entry = self._cs_get(chemspider_id)
                    self.results_chemspider[drug] = chemspider_entry
                    smile = chemspider_entry['smiles']
                    # now search in chembl
                    res_chembl = self.chembl.get_compounds_by_SMILES(smile)
                    try:
                        res_chembl['compounds']
                        self.results_chembl[drug].extend(res_chembl['compounds'])
                    except:
                        pass

            pb.animate(i+1)
開發者ID:CancerRxGene,項目名稱:gdsctools,代碼行數:26,代碼來源:drugs.py

示例11: dendogram_coefficients

    def dendogram_coefficients(self, stacked=False, show=True, cmap="terrain"):
        """

        shows the coefficient of each optimised model for each drug
        """
        drugids = self.drugIds
        from easydev import Progress
        pb = Progress(len(drugids))
        d = {}

        for i, drug_name in enumerate(drugids):
            X, Y = self._get_one_drug_data(drug_name, randomize_Y=False)
            results = self.runCV(drug_name, verbose=False)
            df = pd.DataFrame({'name': X.columns, 'weight': results.coefficients})
            df = df.set_index("name").sort_values("weight")
            d[drug_name] = df.copy()
            pb.animate(i+1)

        # use drugid to keep same order as in the data
        dfall = pd.concat([d[i] for i in drugids], axis=1)
        dfall.columns = drugids

        if show:
            from biokit import heatmap
            h = heatmap.Heatmap(dfall, cmap=cmap)
            h.plot(num=1,colorbar_position="top left")

        if stacked is True:
            dfall = dfall.stack().reset_index()
            dfall.columns = ["feature", "drug", "weight"]
        return dfall
開發者ID:CancerRxGene,項目名稱:gdsctools,代碼行數:31,代碼來源:regression.py

示例12: create_html_associations

    def create_html_associations(self):
        """Create an HTML page for each significant association

        The name of the output HTML file is **<association id>.html**
        where association id is stored in :attr:`df`.

        """
        print("\nCreating individual HTML pages for each association")
        df = self.get_significant_set()

        drugs = df['DRUG_ID'].values
        features = df['FEATURE'].values
        assocs = df['ASSOC_ID'].values
        fdrs = df['ANOVA_FEATURE_FDR'].values

        N = len(df)
        pb = Progress(N)

        html = Association(self, drug='dummy', feature='dummy',  fdr='dummy')

        for i in range(N):
            html.drug = drugs[i]
            html.feature = features[i]
            html._filename = str(assocs[i]) + '.html'
            html.fdr = fdrs[i]
            html.assoc_id = assocs[i]
            html._init_report() # since we have one shared instance
            html.create_report(onweb=False)
            pb.animate(i+1)
開發者ID:howard-lightfoot,項目名稱:gdsctools,代碼行數:29,代碼來源:anova_report.py

示例13: select_random_reads

    def select_random_reads(self, N=None, output_filename="random.fasta"):
        """Select random reads and save in a file

        :param int N: number of random unique reads to select
            should provide a number but a list can be used as well.
        :param str output_filename:
        """
        import numpy as np
        thisN = len(self)
        if isinstance(N, int):
            if N > thisN:
                N = thisN
            # create random set of reads to pick up
            cherries = list(range(thisN))
            np.random.shuffle(cherries)
            # cast to set for efficient iteration
            cherries = set(cherries[0:N])
        elif isinstance(N, set):
            cherries = N
        elif isinstance(N, list):
            cherries = set(N)
        fasta = FastxFile(self.filename)
        pb = Progress(thisN) # since we scan the entire file
        with open(output_filename, "w") as fh:
            for i, read in enumerate(fasta):
                if i in cherries:
                    fh.write(read.__str__() + "\n")
                else:
                    pass
                pb.animate(i+1)
        return cherries
開發者ID:sequana,項目名稱:sequana,代碼行數:31,代碼來源:fasta.py

示例14: volcano_plot_all_drugs

    def volcano_plot_all_drugs(self):
        """Create a volcano plot for each drug and save in PNG files

        Each filename is set to **volcano_<drug identifier>.png**
        """
        drugs = list(self.df[self._colname_drugid].unique())
        pb = Progress(len(drugs), 1)
        for i, drug in enumerate(drugs):
            self.volcano_plot_one_drug(drug)
            self.savefig("volcano_%s.png" % drug, size_inches=(10, 10))
            pb.animate(i+1)
開發者ID:CancerRxGene,項目名稱:gdsctools,代碼行數:11,代碼來源:volcano.py

示例15: _load_complexes

 def _load_complexes(self, show_progress=True):
     from easydev import Progress
     import time
     pb = Progress(len(self.df.complexAC))
     complexes = {}
     self.logging.info("Loading all details from the IntactComplex database")
     for i, identifier in enumerate(self.df.complexAC):
         res = self.webserv.details(identifier)
         complexes[identifier] = res
         if show_progress:
             pb.animate(i+1)
     self._complexes = complexes
開發者ID:biokit,項目名稱:biokit,代碼行數:12,代碼來源:complexes.py


注:本文中的easydev.Progress類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。