當前位置: 首頁>>代碼示例>>Python>>正文


Python DocumentFeature.smart_lower方法代碼示例

本文整理匯總了Python中discoutils.tokens.DocumentFeature.smart_lower方法的典型用法代碼示例。如果您正苦於以下問題:Python DocumentFeature.smart_lower方法的具體用法?Python DocumentFeature.smart_lower怎麽用?Python DocumentFeature.smart_lower使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在discoutils.tokens.DocumentFeature的用法示例。


在下文中一共展示了DocumentFeature.smart_lower方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_smart_lower

# 需要導入模塊: from discoutils.tokens import DocumentFeature [as 別名]
# 或者: from discoutils.tokens.DocumentFeature import smart_lower [as 別名]
def test_smart_lower():
    # test that the PoS of an n-gram entry is not lowercased
    assert DocumentFeature.smart_lower('Cat/N') == 'cat/N'
    assert DocumentFeature.smart_lower('Cat/n') == 'cat/n'
    assert DocumentFeature.smart_lower('Red/J_CaT/N') == 'red/J_cat/N'
    assert DocumentFeature.smart_lower('Red/J CaT/N', separator=' ') == 'red/J cat/N'
    # test that features are not touched
    assert DocumentFeature.smart_lower('amod-DEP:former', lowercasing=False) == 'amod-DEP:former'
開發者ID:jt86,項目名稱:DiscoUtils,代碼行數:10,代碼來源:test_token.py

示例2: _read_vector

# 需要導入模塊: from discoutils.tokens import DocumentFeature [as 別名]
# 或者: from discoutils.tokens.DocumentFeature import smart_lower [as 別名]
def _read_vector(vector_file):
    bn = os.path.basename(vector_file)
    sent_file = os.path.join(os.path.dirname(vector_file), "%s.sent" % bn.split(".")[0])
    if not os.path.exists(sent_file):
        return "__MISSING__", {}

    with open(sent_file) as infile:
        phrase = " ".join(line.strip().split("\t")[1] for line in infile if line.strip())

    with gzip.open(vector_file) as infile:
        file_content = infile.readline().decode("utf8").strip().split("\t")
    features = [
        (DocumentFeature.smart_lower(word, lowercasing=True), float(count))
        for (word, count) in walk_nonoverlapping_pairs(file_content, beg=0)
    ]
    return phrase, features
開發者ID:mbatchkarov,項目名稱:dc_evaluation,代碼行數:18,代碼來源:apt_java_utils.py

示例3: __iter__

# 需要導入模塊: from discoutils.tokens import DocumentFeature [as 別名]
# 或者: from discoutils.tokens.DocumentFeature import smart_lower [as 別名]
 def __iter__(self):
     for fname in self.files:
         filename = join(self.dirname, fname)
         infile = gzip.open(filename) if is_gzipped(filename) else open(filename)
         with contextlib.closing(infile):
             for line in infile:
                 # yield gensim.utils.tokenize(line, lower=True)
                 if isinstance(line, bytes):
                     line = line.decode()
                 res = [DocumentFeature.smart_lower(w) for w in line.split() if
                        DocumentFeature.from_string(w).type != 'EMPTY']
                 if len(res) > 8:
                     # ignore short sentences, they are probably noise
                     if self.remove_pos:
                         yield [x.split('/')[0] for x in res]
                     else:
                         yield res
開發者ID:mbatchkarov,項目名稱:vector_builder,代碼行數:19,代碼來源:get_word2vec_vectors.py

示例4: from_tsv

# 需要導入模塊: from discoutils.tokens import DocumentFeature [as 別名]
# 或者: from discoutils.tokens.DocumentFeature import smart_lower [as 別名]
    def from_tsv(cls, tsv_file, sim_threshold=0, include_self=False,
                 lowercasing=False, ngram_separator='_', allow_lexical_overlap=True,
                 row_filter=lambda x, y: True, column_filter=lambda x: True, max_len=50,
                 max_neighbours=1e8, merge_duplicates=False, immutable=True,
                 enforce_word_entry_pos_format=True, tar=False, **kwargs):
        """
        Create a Thesaurus by parsing a Byblo-compatible TSV files (events or sims).
        If duplicate values are encoutered during parsing, only the latest will be kept.

        :param tsv_file: path to input TSV file
        :type tsv_file:  str
        :param sim_threshold: min similarity between an entry and its neighbour for the neighbour to be included
        :type sim_threshold: float
        :param include_self: whether to include self as nearest neighbour.
        :type include_self: bool
        :param lowercasing: if true, most of what is read will be lowercased (excluding PoS tags), so
            Cat/N -> cat/N. This is desirable when reading thesauri with this class. If False, no lowercasing
            will take place. This might be desirable when readings feature lists or already lowercased neighbour
            lists. FET + Byblo thesauri are already lowercased.
        :type lowercasing: bool
        :param ngram_separator: When n_gram entries are read in, what are the indidivual tokens separated by
        :param column_filter: A function that takes a string (column in the file) and returns whether or not
        the string should be kept
        :param row_filter: takes a string and its corresponding DocumentFeature and determines if it should be loaded.
        If `enforce_word_entry_pos_format` is `False`, the second parameter to this function will be `None`
        :param allow_lexical_overlap: whether neighbours/features are allowed to overlap lexically with the entry
        they are neighbours/features of. OTE: THE BEHAVIOUR OF THIS PARAMETER IS SLIGHTLY DIFFERENT FROM THE EQUIVALENT
        IN VECTORS. SEE COMMENT THERE.
        :param max_len: maximum length (in characters) of permissible **entries**. Longer entries are ignored.
        :param max_neighbours: maximum neighbours per entry. This is applied AFTER the filtering defined by
        column_filter and allow_lexical_overlap is finished.
        :param merge_duplicates: whether to raise en error if multiple entries exist, or concatenate/add them together.
        The former is appropriate for `Thesaurus`, and the latter for `Vectors`
        :param enforce_word_entry_pos_format: if true, entries that are not in a `word/POS` format are skipped. This
        must be true for `allow_lexical_overlap` to work.
        :param tar: whether the file is compressed by running `tar -zcvf file.gz file.txt`. Assuming the tar contains
        a single file.
        """

        if not tsv_file:
            raise ValueError("No thesaurus specified")

        to_return = dict()
        logging.info('Loading thesaurus %s from disk', tsv_file)
        gz_file = tsv_file + '.gz'
        if os.path.exists(gz_file) and tar:
            logging.warning('Using .gz version of thesaurus')
            tsv_file = gz_file
        if not allow_lexical_overlap:
            logging.warning('DISALLOWING LEXICAL OVERLAP')

        if not allow_lexical_overlap and not enforce_word_entry_pos_format:
            raise ValueError('allow_lexical_overlap requires entries to be converted to a DocumentFeature. '
                             'Please enable enforce_word_entry_pos_format')
        FILTERED = '___FILTERED___'.lower()

        if tar:
            tarf = tarfile.open(tsv_file, 'r')
            members = tarf.getmembers()
            if len(members) != 1:
                # todo this is odd, I don't know why it is happening
                # on some machine tar adds a second hidden file to the archive
                logging.warning('Tar archive contains multiple files: %r' % members)
                logging.warning('Using the last file in the tar')
            fhandle = tarf.extractfile(members[-1])
        else:
            fhandle = open(tsv_file)

        with fhandle as infile:
            for line in infile.readlines():
                if tar:
                    # this is a byte steam, needs to be decoded
                    tokens = line.decode('UTF8').strip().split('\t')
                else:
                    tokens = line.strip().split('\t')

                if len(tokens) % 2 == 0:
                    # must have an odd number of things, one for the entry
                    # and pairs for (neighbour, similarity)
                    logging.warning('Skipping dodgy line in thesaurus file: %s\n %s', tsv_file, line)
                    continue

                if tokens[0] != FILTERED:
                    key = DocumentFeature.smart_lower(tokens[0], ngram_separator, lowercasing)
                    dfkey = DocumentFeature.from_string(key) if enforce_word_entry_pos_format else None

                    if enforce_word_entry_pos_format and dfkey.type == 'EMPTY':
                        # do not load things in the wrong format, they'll get in the way later
                        logging.warning('%s is not in the word/POS format, skipping', tokens[0])
                        continue

                    if (not row_filter(key, dfkey)) or len(key) > max_len:
                        logging.warning('Skipping entry for %s', key)
                        continue

                    to_insert = [(DocumentFeature.smart_lower(word, ngram_separator, lowercasing), float(sim))
                                 for (word, sim) in walk_nonoverlapping_pairs(tokens, 1)
                                 if word.lower() != FILTERED and column_filter(word) and float(sim) > sim_threshold]

                    if not allow_lexical_overlap:
#.........這裏部分代碼省略.........
開發者ID:jt86,項目名稱:DiscoUtils,代碼行數:103,代碼來源:thesaurus_loader.py


注:本文中的discoutils.tokens.DocumentFeature.smart_lower方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。