當前位置: 首頁>>代碼示例>>Python>>正文


Python Job.params["nu"]方法代碼示例

本文整理匯總了Python中disco.core.Job.params["nu"]方法的典型用法代碼示例。如果您正苦於以下問題:Python Job.params["nu"]方法的具體用法?Python Job.params["nu"]怎麽用?Python Job.params["nu"]使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在disco.core.Job的用法示例。


在下文中一共展示了Job.params["nu"]方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from disco.core import Job [as 別名]
# 或者: from disco.core.Job import params["nu"] [as 別名]
def fit(dataset, nu=0.1, save_results=True, show=False):
    """
    Function starts a job for calculation of model parameters

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    nu - parameter to adjust the classifier
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of fit model results on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job

    if dataset.params["y_map"] == []:
        raise Exception("Linear proximal SVM requires a target label mapping parameter.")
    try:
        nu = float(nu)
        if nu <= 0:
            raise Exception("Parameter nu should be greater than 0")
    except ValueError:
        raise Exception("Parameter should be numerical.")

    job = Job(worker=Worker(save_results=save_results))

    # job parallelizes mappers and joins them with one reducer
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = dataset.params
    job.params["nu"] = nu
    job.run(name="linearsvm_fit", input=dataset.params["data_tag"])
    fitmodel_url = job.wait(show=show)
    return {"linsvm_fitmodel": fitmodel_url}  # return results url
開發者ID:romanorac,項目名稱:discomll,代碼行數:41,代碼來源:linear_svm.py


注:本文中的disco.core.Job.params["nu"]方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。