當前位置: 首頁>>代碼示例>>Python>>正文


Python direction.ProbabilisticDirectionGetter類代碼示例

本文整理匯總了Python中dipy.direction.ProbabilisticDirectionGetter的典型用法代碼示例。如果您正苦於以下問題:Python ProbabilisticDirectionGetter類的具體用法?Python ProbabilisticDirectionGetter怎麽用?Python ProbabilisticDirectionGetter使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了ProbabilisticDirectionGetter類的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_ProbabilisticDirectionGetter

def test_ProbabilisticDirectionGetter():
    # Test the constructors and errors of the ProbabilisticDirectionGetter

    class SillyModel(SphHarmModel):

        sh_order = 4

        def fit(self, data, mask=None):
            coeff = np.zeros(data.shape[:-1] + (15,))
            return SphHarmFit(self, coeff, mask=None)

    model = SillyModel(gtab=None)
    data = np.zeros((3, 3, 3, 7))

    # Test if the tracking works on different dtype of the same data.
    for dtype in [np.float32, np.float64]:
        fit = model.fit(data.astype(dtype))

        # Sample point and direction
        point = np.zeros(3)
        dir = unit_octahedron.vertices[0].copy()

        # make a dg from a fit
        dg = ProbabilisticDirectionGetter.from_shcoeff(fit.shm_coeff, 90,
                                                       unit_octahedron)
        state = dg.get_direction(point, dir)
        npt.assert_equal(state, 1)

        # Make a dg from a pmf
        N = unit_octahedron.theta.shape[0]
        pmf = np.zeros((3, 3, 3, N))
        dg = ProbabilisticDirectionGetter.from_pmf(pmf, 90, unit_octahedron)
        state = dg.get_direction(point, dir)
        npt.assert_equal(state, 1)

        # pmf shape must match sphere
        bad_pmf = pmf[..., 1:]
        npt.assert_raises(ValueError, ProbabilisticDirectionGetter.from_pmf,
                          bad_pmf, 90, unit_octahedron)

        # pmf must have 4 dimensions
        bad_pmf = pmf[0, ...]
        npt.assert_raises(ValueError, ProbabilisticDirectionGetter.from_pmf,
                          bad_pmf, 90, unit_octahedron)
        # pmf cannot have negative values
        pmf[0, 0, 0, 0] = -1
        npt.assert_raises(ValueError, ProbabilisticDirectionGetter.from_pmf,
                          pmf, 90, unit_octahedron)

        # Check basis_type keyword
        dg = ProbabilisticDirectionGetter.from_shcoeff(fit.shm_coeff, 90,
                                                       unit_octahedron,
                                                       basis_type="mrtrix")

        npt.assert_raises(ValueError,
                          ProbabilisticDirectionGetter.from_shcoeff,
                          fit.shm_coeff, 90, unit_octahedron,
                          basis_type="not a basis")
開發者ID:StongeEtienne,項目名稱:dipy,代碼行數:58,代碼來源:test_prob_direction_getter.py

示例2: tracking_prob

def tracking_prob(dir_src, dir_out, verbose=False):

    wm_name = 'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
    wm_mask, affine = load_nifti(pjoin(dir_src, wm_name), verbose)

    sh_name = 'sh_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
    sh, _ = load_nifti(pjoin(dir_src, sh_name), verbose)

    sphere = get_sphere('symmetric724') 

    classifier = ThresholdTissueClassifier(wm_mask.astype('f8'), .5)
    classifier = BinaryTissueClassifier(wm_mask)
    max_dg = ProbabilisticDirectionGetter.from_shcoeff(sh, max_angle=par_trk_max_angle, sphere=sphere)
    seeds = utils.seeds_from_mask(wm_mask, density=2, affine=affine)
    streamlines = LocalTracking(max_dg, classifier, seeds, affine, step_size=par_trk_step_size)
    streamlines = list(streamlines)

    trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_trk_prob_tag + '.trk'
    trk_out = os.path.join(dir_out, trk_name)
 
    save_trk(trk_out, streamlines, affine, wm_mask.shape)

    dpy_out = trk_out.replace('.trk', '.dpy')
    dpy = Dpy(dpy_out, 'w')
    dpy.write_tracks(streamlines)
    dpy.close()
開發者ID:JohnGriffiths,項目名稱:HCP-Tractography,代碼行數:26,代碼來源:hcp_pipenode.py

示例3: _get_direction_getter

    def _get_direction_getter(self, strategy_name, pam, pmf_threshold,
                              max_angle):
        """Get Tracking Direction Getter object.

        Parameters
        ----------
        strategy_name: str
            String representing direction getter name.
        pam: instance of PeaksAndMetrics
            An object with ``gfa``, ``peak_directions``, ``peak_values``,
            ``peak_indices``, ``odf``, ``shm_coeffs`` as attributes.
        pmf_threshold : float
            Threshold for ODF functions.
        max_angle : float
            Maximum angle between streamline segments.

        Returns
        -------
        direction_getter : instance of DirectionGetter
            Used to get directions for fiber tracking.

        """
        dg, msg = None, ''
        if strategy_name.lower() in ["deterministic", "det"]:
            msg = "Deterministic"
            dg = DeterministicMaximumDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)
        elif strategy_name.lower() in ["probabilistic", "prob"]:
            msg = "Probabilistic"
            dg = ProbabilisticDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)
        elif strategy_name.lower() in ["closestpeaks", "cp"]:
            msg = "ClosestPeaks"
            dg = ClosestPeakDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)
        elif strategy_name.lower() in ["eudx", ]:
            msg = "Eudx"
            dg = pam
        else:
            msg = "No direction getter defined. Eudx"
            dg = pam

        logging.info('{0} direction getter strategy selected'.format(msg))
        return dg
開發者ID:arokem,項目名稱:dipy,代碼行數:53,代碼來源:tracking.py

示例4: _get_direction_getter

    def _get_direction_getter(self, strategy_name, pam, pmf_threshold=0.1,
                              max_angle=30.):
        """Get Tracking Direction Getter object.

        Parameters
        ----------
        strategy_name: str
            string representing direction getter name

        Returns
        -------
        direction_getter : instance of DirectionGetter
            Used to get directions for fiber tracking.

        """
        dg, msg = None, ''
        if strategy_name.lower() in ["deterministic", "det"]:
            msg = "Deterministic"
            dg = DeterministicMaximumDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)
        elif strategy_name.lower() in ["probabilistic", "prob"]:
            msg = "Probabilistic"
            dg = ProbabilisticDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)
        elif strategy_name.lower() in ["closestpeaks", "cp"]:
            msg = "ClosestPeaks"
            dg = ClosestPeakDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)
        elif strategy_name.lower() in ["eudx", ]:
            msg = "Eudx"
            dg = pam
        else:
            msg = "No direction getter defined. Deterministic"
            dg = DeterministicMaximumDirectionGetter.from_shcoeff(
                pam.shm_coeff,
                sphere=pam.sphere,
                max_angle=max_angle,
                pmf_threshold=pmf_threshold)

        logging.info('{0} direction getter strategy selected'.format(msg))
        return dg
開發者ID:StongeEtienne,項目名稱:dipy,代碼行數:50,代碼來源:tracking.py

示例5: auto_response

response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
csd_fit = csd_model.fit(data, mask=white_matter)

"""
Next we'll need to make a ``ProbabilisticDirectionGetter``. Because the CSD
model represents the FOD using the spherical harmonic basis, we can use the
``from_shcoeff`` method to create the direction getter. This direction getter
will randomly sample directions from the FOD each time the tracking algorithm
needs to take another step.
"""

from dipy.direction import ProbabilisticDirectionGetter

prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
                                                    max_angle=30.,
                                                    sphere=default_sphere)

"""
As with deterministic tracking, we'll need to use a tissue classifier to
restrict the tracking to the white matter of the brain. One might be tempted
to use the GFA of the CSD FODs to build a tissue classifier, however the GFA
values of these FODs don't classify gray matter and white matter well. We will
therefore use the GFA from the CSA model which we fit for the first section of
this example. Alternatively, one could fit a ``TensorModel`` to the data and use
the fractional anisotropy (FA) to build a tissue classifier.
"""

classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)

"""
開發者ID:albayenes,項目名稱:dipy,代碼行數:31,代碼來源:introduction_to_basic_tracking.py

示例6: _run_interface

	def _run_interface(self, runtime):
		import numpy as np
		import nibabel as nib
		from dipy.io import read_bvals_bvecs
		from dipy.core.gradients import gradient_table
		from nipype.utils.filemanip import split_filename

		# Loading the data
		fname = self.inputs.in_file
		img = nib.load(fname)
		data = img.get_data()
		affine = img.get_affine()

		FA_fname = self.inputs.FA_file
		FA_img = nib.load(FA_fname)
		fa = FA_img.get_data()
		affine = FA_img.get_affine()
		affine = np.matrix.round(affine)

		mask_fname = self.inputs.brain_mask
		mask_img = nib.load(mask_fname)
		mask = mask_img.get_data()

		bval_fname = self.inputs.bval
		bvals = np.loadtxt(bval_fname)

		bvec_fname = self.inputs.bvec
		bvecs = np.loadtxt(bvec_fname)
		bvecs = np.vstack([bvecs[0,:],bvecs[1,:],bvecs[2,:]]).T
		gtab = gradient_table(bvals, bvecs)

		# Creating a white matter mask
		fa = fa*mask
		white_matter = fa >= 0.2

		# Creating a seed mask
		from dipy.tracking import utils
		seeds = utils.seeds_from_mask(white_matter, density=[2, 2, 2], affine=affine)

		# Fitting the CSA model
		from dipy.reconst.shm import CsaOdfModel
		from dipy.data import default_sphere
		from dipy.direction import peaks_from_model
		csa_model = CsaOdfModel(gtab, sh_order=8)
		csa_peaks = peaks_from_model(csa_model, data, default_sphere,
		                             relative_peak_threshold=.8,
		                             min_separation_angle=45,
		                             mask=white_matter)

		from dipy.tracking.local import ThresholdTissueClassifier
		classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)

		# CSD model
		from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel, auto_response)
		response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
		csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
		csd_fit = csd_model.fit(data, mask=white_matter)

		from dipy.direction import ProbabilisticDirectionGetter
		prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
		                                                    max_angle=45.,
		                                                    sphere=default_sphere)

		# Tracking
		from dipy.tracking.local import LocalTracking
		streamlines = LocalTracking(prob_dg, classifier, seeds, affine,
		                            step_size=.5, maxlen=200, max_cross=1)

		# Compute streamlines and store as a list.
		streamlines = list(streamlines)

		# Saving the trackfile
		from dipy.io.trackvis import save_trk
		_, base, _ = split_filename(fname)
		save_trk(base + '_CSDprob.trk', streamlines, affine, fa.shape)

		return runtime
開發者ID:joebathelt,項目名稱:Neuroimaging_PythonTools,代碼行數:77,代碼來源:own_nipype.py

示例7: test_particle_filtering_tractography

def test_particle_filtering_tractography():
    """This tests that the ParticleFilteringTracking produces
    more streamlines connecting the gray matter than LocalTracking.
    """
    sphere = get_sphere('repulsion100')
    step_size = 0.2

    # Simple tissue masks
    simple_wm = np.array([[0, 0, 0, 0, 0, 0],
                          [0, 0, 1, 0, 0, 0],
                          [0, 1, 1, 1, 0, 0],
                          [0, 1, 1, 1, 0, 0],
                          [0, 0, 0, 0, 0, 0]])
    simple_wm = np.dstack([np.zeros(simple_wm.shape),
                           simple_wm,
                           simple_wm,
                           simple_wm,
                           np.zeros(simple_wm.shape)])
    simple_gm = np.array([[1, 1, 0, 0, 0, 0],
                          [1, 1, 0, 0, 0, 0],
                          [0, 1, 0, 0, 1, 0],
                          [0, 0, 0, 0, 1, 0],
                          [0, 0, 0, 0, 0, 0]])
    simple_gm = np.dstack([np.zeros(simple_gm.shape),
                           simple_gm,
                           simple_gm,
                           simple_gm,
                           np.zeros(simple_gm.shape)])
    simple_csf = np.ones(simple_wm.shape) - simple_wm - simple_gm
    tc = ActTissueClassifier.from_pve(simple_wm, simple_gm, simple_csf)
    seeds = seeds_from_mask(simple_wm, density=2)

    # Random pmf in every voxel
    shape_img = list(simple_wm.shape)
    shape_img.extend([sphere.vertices.shape[0]])
    np.random.seed(0)  # Random number generator initialization
    pmf = np.random.random(shape_img)

    # Test that PFT recover equal or more streamlines than localTracking
    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 60, sphere)
    local_streamlines_generator = LocalTracking(dg, tc, seeds, np.eye(4),
                                                step_size, max_cross=1,
                                                return_all=False)
    local_streamlines = Streamlines(local_streamlines_generator)

    pft_streamlines_generator = ParticleFilteringTracking(
        dg, tc, seeds, np.eye(4), step_size, max_cross=1, return_all=False,
        pft_back_tracking_dist=1, pft_front_tracking_dist=0.5)
    pft_streamlines = Streamlines(pft_streamlines_generator)

    npt.assert_(np.array([len(pft_streamlines) > 0]))
    npt.assert_(np.array([len(pft_streamlines) >= len(local_streamlines)]))

    # Test that all points are equally spaced
    for l in [1, 2, 5, 10, 100]:
        pft_streamlines = ParticleFilteringTracking(dg, tc, seeds, np.eye(4),
                                                    step_size, max_cross=1,
                                                    return_all=True, maxlen=l)
        for s in pft_streamlines:
            for i in range(len(s) - 1):
                npt.assert_almost_equal(np.linalg.norm(s[i] - s[i + 1]),
                                        step_size)
    # Test that all points are within the image volume
    seeds = seeds_from_mask(np.ones(simple_wm.shape), density=1)
    pft_streamlines_generator = ParticleFilteringTracking(
        dg, tc, seeds, np.eye(4), step_size, max_cross=1, return_all=True)
    pft_streamlines = Streamlines(pft_streamlines_generator)

    for s in pft_streamlines:
        npt.assert_(np.all((s + 0.5).astype(int) >= 0))
        npt.assert_(np.all((s + 0.5).astype(int) < simple_wm.shape))

    # Test that the number of streamline return with return_all=True equal the
    # number of seeds places
    npt.assert_(np.array([len(pft_streamlines) == len(seeds)]))

    # Test non WM seed position
    seeds = [[0, 5, 4], [0, 0, 1], [50, 50, 50]]
    pft_streamlines_generator = ParticleFilteringTracking(
        dg, tc, seeds, np.eye(4), step_size, max_cross=1, return_all=True)
    pft_streamlines = Streamlines(pft_streamlines_generator)

    npt.assert_equal(len(pft_streamlines[0]), 3)  # INVALIDPOINT
    npt.assert_equal(len(pft_streamlines[1]), 3)  # ENDPOINT
    npt.assert_equal(len(pft_streamlines[2]), 1)  # OUTSIDEIMAGE

    # Test with wrong tissueclassifier type
    tc_bin = BinaryTissueClassifier(simple_wm)
    npt.assert_raises(ValueError,
                      lambda: ParticleFilteringTracking(dg, tc_bin, seeds,
                                                        np.eye(4), step_size))
    # Test with invalid back/front tracking distances
    npt.assert_raises(
        ValueError,
        lambda: ParticleFilteringTracking(dg, tc, seeds, np.eye(4), step_size,
                                          pft_back_tracking_dist=0,
                                          pft_front_tracking_dist=0))
    npt.assert_raises(
        ValueError,
        lambda: ParticleFilteringTracking(dg, tc, seeds, np.eye(4), step_size,
#.........這裏部分代碼省略.........
開發者ID:MarcCote,項目名稱:dipy,代碼行數:101,代碼來源:test_tracking.py

示例8: test_stop_conditions

def test_stop_conditions():
    """This tests that the Local Tracker behaves as expected for the
    following tissue types.
    """
    # TissueTypes.TRACKPOINT = 1
    # TissueTypes.ENDPOINT = 2
    # TissueTypes.INVALIDPOINT = 0
    tissue = np.array([[2, 1, 1, 2, 1],
                       [2, 2, 1, 1, 2],
                       [1, 1, 1, 1, 1],
                       [1, 1, 1, 2, 2],
                       [0, 1, 1, 1, 2],
                       [0, 1, 1, 0, 2],
                       [1, 0, 1, 1, 1]])
    tissue = tissue[None]

    sphere = HemiSphere.from_sphere(unit_octahedron)
    pmf_lookup = np.array([[0., 0., 0., ],
                           [0., 0., 1.]])
    pmf = pmf_lookup[(tissue > 0).astype("int")]

    # Create a seeds along
    x = np.array([0., 0, 0, 0, 0, 0, 0])
    y = np.array([0., 1, 2, 3, 4, 5, 6])
    z = np.array([1., 1, 1, 0, 1, 1, 1])
    seeds = np.column_stack([x, y, z])

    # Set up tracking
    endpoint_mask = tissue == TissueTypes.ENDPOINT
    invalidpoint_mask = tissue == TissueTypes.INVALIDPOINT
    tc = ActTissueClassifier(endpoint_mask, invalidpoint_mask)
    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 60, sphere)

    # valid streamlines only
    streamlines_generator = LocalTracking(direction_getter=dg,
                                          tissue_classifier=tc,
                                          seeds=seeds,
                                          affine=np.eye(4),
                                          step_size=1.,
                                          return_all=False)
    streamlines_not_all = iter(streamlines_generator)

    # all streamlines
    streamlines_all_generator = LocalTracking(direction_getter=dg,
                                              tissue_classifier=tc,
                                              seeds=seeds,
                                              affine=np.eye(4),
                                              step_size=1.,
                                              return_all=True)
    streamlines_all = iter(streamlines_all_generator)

    # Check that the first streamline stops at 0 and 3 (ENDPOINT)
    y = 0
    sl = next(streamlines_not_all)
    npt.assert_equal(sl[0], [0, y, 0])
    npt.assert_equal(sl[-1], [0, y, 3])
    npt.assert_equal(len(sl), 4)

    sl = next(streamlines_all)
    npt.assert_equal(sl[0], [0, y, 0])
    npt.assert_equal(sl[-1], [0, y, 3])
    npt.assert_equal(len(sl), 4)

    # Check that the first streamline stops at 0 and 4 (ENDPOINT)
    y = 1
    sl = next(streamlines_not_all)
    npt.assert_equal(sl[0], [0, y, 0])
    npt.assert_equal(sl[-1], [0, y, 4])
    npt.assert_equal(len(sl), 5)

    sl = next(streamlines_all)
    npt.assert_equal(sl[0], [0, y, 0])
    npt.assert_equal(sl[-1], [0, y, 4])
    npt.assert_equal(len(sl), 5)

    # This streamline should be the same as above. This row does not have
    # ENDPOINTs, but the streamline should stop at the edge and not include
    # OUTSIDEIMAGE points.
    y = 2
    sl = next(streamlines_not_all)
    npt.assert_equal(sl[0], [0, y, 0])
    npt.assert_equal(sl[-1], [0, y, 4])
    npt.assert_equal(len(sl), 5)

    sl = next(streamlines_all)
    npt.assert_equal(sl[0], [0, y, 0])
    npt.assert_equal(sl[-1], [0, y, 4])
    npt.assert_equal(len(sl), 5)

    # If we seed on the edge, the first (or last) point in the streamline
    # should be the seed.
    y = 3
    sl = next(streamlines_not_all)
    npt.assert_equal(sl[0], seeds[y])

    sl = next(streamlines_all)
    npt.assert_equal(sl[0], seeds[y])

    # The last 3 seeds should not produce streamlines,
    # INVALIDPOINT streamlines are rejected (return_all=False).
#.........這裏部分代碼省略.........
開發者ID:MarcCote,項目名稱:dipy,代碼行數:101,代碼來源:test_tracking.py

示例9: test_probabilistic_odf_weighted_tracker

def test_probabilistic_odf_weighted_tracker():
    """This tests that the Probabalistic Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.6, .4, 0.]])
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.])] * 30

    mask = (simple_image > 0).astype(float)
    tc = ThresholdTissueClassifier(mask, .5)

    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 90, sphere,
                                               pmf_threshold=0.1)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    expected = [np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [2., 2., 0.],
                          [2., 3., 0.],
                          [2., 4., 0.],
                          [2., 5., 0.]]),
                np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [3., 1., 0.],
                          [4., 1., 0.]])]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    path = [False, False]
    for sl in streamlines:
        if allclose(sl, expected[0]):
            path[0] = True
        elif allclose(sl, expected[1]):
            path[1] = True
        else:
            raise AssertionError()
    npt.assert_(all(path))

    # The first path is not possible if 90 degree turns are excluded
    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 80, sphere,
                                               pmf_threshold=0.1)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[1]))

    # The first path is not possible if pmf_threshold > 0.67
    # 0.4/0.6 < 2/3, multiplying the pmf should not change the ratio
    dg = ProbabilisticDirectionGetter.from_pmf(10*pmf, 90, sphere,
                                               pmf_threshold=0.67)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[1]))

    # Test non WM seed position
    seeds = [[0, 0, 0], [5, 5, 5]]
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 0.2, max_cross=1,
                                return_all=True)
    streamlines = Streamlines(streamlines)
    npt.assert_(len(streamlines[0]) == 3)  # INVALIDPOINT
    npt.assert_(len(streamlines[1]) == 1)  # OUTSIDEIMAGE

    # Test that all points are within the image volume
    seeds = seeds_from_mask(np.ones(mask.shape), density=2)
    streamline_generator = LocalTracking(dg, tc, seeds, np.eye(4), 0.5,
                                         return_all=True)
    streamlines = Streamlines(streamline_generator)
    for s in streamlines:
        npt.assert_(np.all((s + 0.5).astype(int) >= 0))
        npt.assert_(np.all((s + 0.5).astype(int) < mask.shape))
    # Test that the number of streamline return with return_all=True equal the
    # number of seeds places

    npt.assert_(np.array([len(streamlines) == len(seeds)]))

    # Test reproducibility
    tracking_1 = Streamlines(LocalTracking(dg, tc, seeds, np.eye(4),
                                           0.5,
                                           random_seed=0)).data
    tracking_2 = Streamlines(LocalTracking(dg, tc, seeds, np.eye(4),
#.........這裏部分代碼省略.........
開發者ID:MarcCote,項目名稱:dipy,代碼行數:101,代碼來源:test_tracking.py

示例10: test_ProbabilisticOdfWeightedTracker

def test_ProbabilisticOdfWeightedTracker():
    """This tests that the Probabalistic Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.5, .5, 0.]])
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.])] * 30

    mask = (simple_image > 0).astype(float)
    tc = ThresholdTissueClassifier(mask, .5)

    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 90, sphere)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    expected = [np.array([[ 0.,  1.,  0.],
                          [ 1.,  1.,  0.],
                          [ 2.,  1.,  0.],
                          [ 2.,  2.,  0.],
                          [ 2.,  3.,  0.],
                          [ 2.,  4.,  0.],
                          [ 2.,  5.,  0.]]),
                np.array([[ 0.,  1.,  0.],
                          [ 1.,  1.,  0.],
                          [ 2.,  1.,  0.],
                          [ 3.,  1.,  0.],
                          [ 4.,  1.,  0.]])
               ]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    path = [False, False]
    for sl in streamlines:
        dir = ( -sphere.vertices[0] ).copy()
        if allclose(sl, expected[0]):
            path[0] = True
        elif allclose(sl, expected[1]):
            path[1] = True
        else:
            raise AssertionError()
    npt.assert_(all(path))

    # The first path is not possible if 90 degree turns are excluded
    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 80, sphere)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[1]))
開發者ID:Paolopost,項目名稱:dipy,代碼行數:64,代碼來源:test_local_tracking.py

示例11: LocalTracking

det_streamline_generator = LocalTracking(pam,
                                         cmc_classifier,
                                         seeds,
                                         affine,
                                         step_size=step_size)

# The line below is failing not sure why
# detstreamlines = Streamlines(det_streamline_generator)

detstreamlines = list(det_streamline_generator)
detstreamlines = Streamlines(detstreamlines)
save_trk('det.trk', detstreamlines, affine=np.eye(4),
         vox_size=vox_size, shape=shape)

dg = ProbabilisticDirectionGetter.from_shcoeff(pam.shm_coeff,
                                               max_angle=20.,
                                               sphere=sphere)

# Particle Filtering Tractography
pft_streamline_generator = ParticleFilteringTracking(dg,
                                                     cmc_classifier,
                                                     seeds,
                                                     affine,
                                                     max_cross=1,
                                                     step_size=step_size,
                                                     maxlen=1000,
                                                     pft_back_tracking_dist=2,
                                                     pft_front_tracking_dist=1,
                                                     particle_count=15,
                                                     return_all=False)
# The line below is failing not sure why
開發者ID:nipy,項目名稱:dipy_qa,代碼行數:31,代碼來源:best_fiber_tracking.py

示例12: LocalTracking

distribution of small fiber bundles within each voxel. We can use this
distribution for probabilistic fiber tracking. One way to do this is to
represent the FOD using a discrete sphere. This discrete FOD can be used by the
Probabilistic Direction Getter as a PMF for sampling tracking directions. We
need to clip the FOD to use it as a PMF because the latter cannot have negative
values. (Ideally the FOD should be strictly positive, but because of noise
and/or model failures sometimes it can have negative values).
"""

from dipy.direction import ProbabilisticDirectionGetter
from dipy.data import small_sphere
from dipy.io.trackvis import save_trk

fod = csd_fit.odf(small_sphere)
pmf = fod.clip(min=0)
prob_dg = ProbabilisticDirectionGetter.from_pmf(pmf, max_angle=30.0, sphere=small_sphere)
streamlines = LocalTracking(prob_dg, classifier, seeds, affine, step_size=0.5)
save_trk("probabilistic_small_sphere.trk", streamlines, affine, labels.shape)

"""
One disadvantage of using a discrete PMF to represent possible tracking
directions is that it tends to take up a lot of memory (RAM). The size of the
PMF, the FOD in this case, must be equal to the number of possible tracking
directions on the hemisphere, and every voxel has a unique PMF. In this case
the data is ``(81, 106, 76)`` and ``small_sphere`` has 181 directions so the
FOD is ``(81, 106, 76, 181)``. One way to avoid sampling the PMF and holding it
in memory is to build the direction getter directly from the spherical harmonic
representation of the FOD. By using this approach, we can also use a larger
sphere, like ``default_sphere`` which has 362 directions on the hemisphere,
without having to worry about memory limitations.
"""
開發者ID:etpeterson,項目名稱:dipy,代碼行數:31,代碼來源:probabilistic_fiber_tracking.py


注:本文中的dipy.direction.ProbabilisticDirectionGetter類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。